'.) Check for updates

Received: 12 October 2023 Revised: 8 January 2024 | Accepted: 4 February 2024 | IET Cyber-SyStemS and Robotics

WF ZHEJIANG | =T s

UNIVERSITY PRESS Engineering and Technology YV [LIEE'Y’

DOI: 10.1049/csy2.12112

ORIGINAL RESEARCH

ROSIC: Enhancing secure and accessible robot control through
open-source instant messaging platforms

Rasoul Sadeghian | Shahrooz Shahin | Sina Sareh

RCA Robotics Laboratory, Royal College of Art, Abstract
London, UK . . . e . . .
Ensuting secure communication and seamless accessibility remains a primary challenge in
c a controlling robots remotely. The authors propose a novel approach that leverages open-
orrespondence . . .
e source instant messaging platforms to overcome the complexities and reduce costs
Sina Sareh.

Email: sina.sareh@rca.ac.uk associated with implementing a secure and user-centred communication system for
remote robot control named Robot Control System using Instant Communication
(ROSIC). By leveraging features, such as real-time messaging, group chats, end-to-end
encryption and cross-platform support inherent in the majority of instant messenger
platforms, we have developed middleware that establishes a secure and efficient
communication system over the Internet. By using instant messaging as the communi-
cation interface between users and robots, ROSIC caters to non-technical users, making it
easier for them to control robots. The architecture of ROSIC enables various scenatios
for robot control, including one user controlling multiple robots, multiple users con-
trolling one robot, multiple robots controlled by multiple users, and one user controlling
one robot. Furthermore, ROSIC facilitates the interaction of multiple robots, enabling
them to interoperate and function collaboratively as a swarm system by providing a
unified communication platform that allows for seamless exchange of data and com-
mands. Telegram was specifically chosen as the instant messaging platform by the authors
due to its open-source nature, robust encryption, compatibility across multiple platforms
and interactive communication capabilities through channels and groups. Notably, the
ROSIC is designed to communicate effectively with robot operating system (ROS)-based
robots to enhance our ability to control them remotely.

KEYWORDS

end-to-end encryption, interactive communication, remote robot control, secure web-based communication

1 | INTRODUCTION

The emergence of web-based teleoperated robots has revolu-
tionised a variety of sectors, including manufacturing, healthcare
and environmental exploration. However, these technological
advancements have created a set of challenges, particularly in
terms of security, user-centredness and accessibility.

A primary concern with robots controlled via web-based
platforms is their dependency on communication networks,
which exposes them to significant security risks [1-0],
including unauthorised access, data breaches and hacking [7].

Another critical aspect is ensuring a user-centred interface for
seamless interactions between users and remote-controlled
robots. The interface should be intuitive, easy to learn and
require minimal training to cater to users with diverse technical
backgrounds. Striking the right balance between functionality
and simplicity is vital to enhancing the efficiency of robot
operation. Moreover, in certain applications, multiple robots
must collaborate and communicate with each other to achieve
a common goal. Coordinating their actions and ensuring
seamless data exchange have become critical for successful
group operations [8—10].

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the

original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2024 The Authors. IET Cyber-Systems and Robotics published by John Wiley & Sons Ltd on behalf of Zhejiang University Press.

IET Cyber-Syst. Robot. 2024;12112.
https://doi.org/10.1049/csy2.12112

wileyonlinelibrary.com/journal/csy2 1of17

https://doi.org/10.1049/csy2.12112
https://orcid.org/0000-0001-6336-4002
https://orcid.org/0000-0002-9787-1798
mailto:sina.sareh@rca.ac.uk
https://orcid.org/0000-0001-6336-4002
https://orcid.org/0000-0002-9787-1798
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://ietresearch.onlinelibrary.wiley.com/journal/26316315
https://doi.org/10.1049/csy2.12112
http://crossmark.crossref.org/dialog/?doi=10.1049%2Fcsy2.12112&domain=pdf&date_stamp=2024-03-29

2 of 17 |

SADEGHIAN ET AL.

From web-based control for robotic arms to predictive
simulations and cloud-based frameworks for seamless in-
teractions with robots, researchers have continuously strived to
improve the user experience and enhance teleoperation. Within
this context, in 1995, Taylor and Trevelyan pioneered web-
based control for a robotic arm to manipulate coloured
blocks [11]. Building upon this work, Burgard and Schulz
developed a predictive simulation for visualising and managing
teleoperation delays in mobile robots [12]. Another significant
contribution came from Goldberg et al., who created a web-
based control system that allowed users to interact with a
robot for gardening purposes via the web [13]. In response to
the demand for enhanced scalability, flexibility and computa-
tional power, cloud-based robots control have evolved, sur-
passing traditional web-based methods by utilising dedicated
cloud server infrastructures. In the realm of service-oriented
computing, Yinong et al. presented a cloud-based framework
for seamless interactions with robots [14]. To address the
challenge of interacting with ROS (Robot Operating System)
for novice users, Osentoski et al. proposed rosbridge and rosjs,
enabling JavaScript-based interactions with ROS topics and
services [15]. Meanwhile, Alexander et al. curated a collection
of open-source modules that leverage modern web and
network technologies to interface with ROS [16]. Additionally,
Kubaa et al. developed an asynchronous cloud-based
communication protocol to facilitate seamless communica-
tion between robots and users [17]. However, despite the ad-
vantages of these internet-based (including web and cloud-
based) telecommunication systems, they do have certain
weaknesses. Some systems require access to unsecure public IP
addresses for WebSocket clients, a communication protocol
that enables two-way interactive communication between a
client and server over a single, long-lived connection [18].
Others may rely on cloud-based services such as ROSLink [19],
which can potentially expose systems to security risks, vendor
lock-in and reduced flexibility. Controlling robots through the
Internet involves various methods, each offering unique ad-
vantages and limitations. ROSBridge, a protocol used for ROS
production, facilitates communication between ROS and
external systems. It provides native integration with ROS,
efficient WebSocket communication and support for various
message types [20]. However, non-ROS applications might be
less straightforward to use, and security vulnerabilities can arise
if not properly configured. Message Queuing Telemetry
Transport, a lightweight messaging protocol popular in
Internet of Things applications, allows efficient remote control
of robots. Its publish/subsctibe and queuing paradigms are
beneficial, but it tequires additional middleware for ROS
integration and may exhibit higher message latency than other
methods [21]. Representational State Transfer Application
Programming Interfaces Application Programming Interfaces
(APIs) offer simplicity and broad support across programming
languages, making them accessible even to non-ROS applica-
tions. However, their statelessness limits real-time capabilities,
and extra effort is needed for security implementation [22].
While WebSockets offer full-duplex communication for real-
time data exchange and are ideal for interactive applications,

they require support on both the client and server sides and
additional security measures may be necessary [23]. Virtual
Private Networks establish secure connections between the
controlling device and the robot, enabling seamless access to
the robot's local network. This ensures a robust integration
with existing ROS infrastructure but network latency and
maintenance complexities could impact real-time applications
[24]. Secure Shell (SSH) provides secure remote access to the
robot's terminal, allowing command execution and remote
management. SSH requires minimal setup and is widely avail-
able, but it lacks continuous streaming and real-time control
capabilities [25].

Motivated by significant challenges of web-based robot
control, including user-centeredness, scalability of access and
security, the Robot Control System using Instant Communi-
cation (ROSIC) system is proposed to (1) enhance web-based
robot control by utilising the advanced features of open-source
instant messaging platforms and (2) facilitate the use of robots,
making them accessible irrespective of user technical expertise.
In this context, the main contributions of this paper include
the design and implementation of ROSIC, a robust middleware
that harnesses the features of open-source instant messaging
platforms to enable secure, efficient and accessible remote
control of robots to significantly reduce the relevant devel-
opment time and cost. Through an innovative architectural
framework, ROSIC enhances the telecommunication process,
enabling users of varying technical backgrounds to remotely
operate robots without requiring in-depth knowledge of ro-
botics. This paper further demonstrates the viability of ROSIC
through comprehensive scenarios, showcasing its potential to
enhance the field of remote robot control and telecommuni-
cation. Figure 1 illustrates the role of the ROSIC middleware
within the robots' remote control system.

The remainder of this paper is organised as follows. In
Section 2, we delve into the details of the ROSIC middleware,
outlining its architecture, key components and integration with
open-source instant messaging platforms. In Section 3, we
explain how ROSIC was integrated with Telegram, a widely
used open-source instant messaging application. We show how
ROSIC's abilities were merged with Telegram's features. We
also describe our approach for testing the ROSIC's perfor-
mance and efficiency, including the experimental setup and
results of the experiments. Expanding on the obtained results,
Section 4 examines the implications of ROSIC's design and its
potential to enhance remote robot control and telecommuni-
cation. The paper concludes in Section 5 by summarising our
contributions and insights and discussing future research
directions.

2 | ROSIC CONCEPT

In the domain of internet-based teleoperated robotics,
achieving seamless remote control coupled with enhancing the
level of data accessibility are two primary challenges. The first
involves improving the efficacy and reliability of remote con-
trol capabilities, particularly over the Internet, which is crucial

85UBD 17 SUOWWIOD BAIFER1D) 3|qedldde au Ag pausenob afe S VO ‘3N 40 S3|NJ 104 Ar1g1IT 8UIIUO AB]IM UO (SUOTIPUOD-PUR-SWLBH LD 3| 1M AReIq 1 BU1|UO//SANY) SUORIPUOD PUe SWie | 8L} 88S *[7202/€0/0€] Uo Areiqiauiiuo A8IM ‘89 L Ad ZTTZT 2AS0/610T 0T/I0p/W00 A8 | IM A RIq 1 [PUUO"YDeesa.18 1//:SONY W04 PAPRO|UMOQ ‘2 ‘¥202 ‘STEITEIE

SADEGHIAN ET AL.

| 30f17

Instant
messaging
application

Android user

N;thorize,

[)
[

-, \~
1?%o e ~— ; .-9\

i

!

1y

FIGURE 1 This diagram illustrates the architecture of the ROSIC, a system designed to facilitate remote control of robots via open-source instant

messaging platforms. Central to the system is the ROSIC core, which is surrounded by four key components: the /inker, which connects all system elements; the

authoriser, which manages user authentication and command authorisation; the organiser, which orchestrates the command flow and user access and the

container, which securely stores data and encapsulates commands. Notably, the architecture's design promotes data security [4], user-centeredness [9],

accessibility [8] and interoperability [26], allowing seamless integration and communication between diverse robot models and platforms. In this system, users of
varying technical backgrounds interact with ROSIC, sending commands that are processed and relayed to various types of robots. ROSIC, Robot Control System

using Instant Communication.

for facilitating real-time interventions and operational adjust-
ments. The second challenge pertains to enhancing data
accessibility. This is particularly important in systems designed
to be managed by multiple operators or utilised by numerous
users, where seamless and secure access to trelevant data is
fundamental for efficient operation. This requirement signifi-
cantly impedes their widespread adoption in this field. More-
over, a predominant advantage in the sphere of mobile
robotics is the ability to control these devices through any
operating system, further broadening their accessibility and
usability.

The fundamental premise of ROSIC is to leverage the
inherent features of open source instant messenger platforms,
such as real-time communication, group chats, end-to-end
encryption and cross-platform support. By utilising these fea-
tures, ROSIC aims to develop a secure, swift, user-centred and
cost-effective telecommunication system tailored for robotics.
This approach not only streamlines the communication pro-
cess but also enhances the accessibility and security of in-
teractions with robotic entities.

2.1 | System architecture

The core architecture of ROSIC comprises four components:
authoriser, organiser, container and linker. These components
can be seamlessly integrated into any open-source instant
messaging platform, leveraging the platform's features to
craft a secure telecommunication system for robots. Algo-
rithm 1 outlines the implementation process of the ROSIC

middleware, providing a comprehensive overview of its
structure and functionality.

- Authoriser: In ROSIC, the authoriser serves as a pivotal
mechanism, determining access rights and permissions
based on specific criteria. Within the framework of instant
messaging platforms, users must first authenticate them-
selves by signing in with a username and password before
they can send or receive messages. For developers inter-
facing with the platform's API, an authorisation token or
API key becomes essential for accessing specific features.
This token, which is a distinct combination of letters and
numbers, is crucial for developers to include in their API
requests. It serves not only to identify the developer or
application but also to verify that they have the necessary
permissions for the desired action. For those aiming to ac-
cess ROSIC through a messaging platform, it is imperative
to input their API token or key into the authorisation file
(container). This file maintains a record of all authorised
users or operators permitted to utilise ROSIC. Upon suc-
cessful registration, ROSIC issues a unique authorisation key
to the user or operator. Every interaction with ROSIC, be it
reading or writing, necessitates the inclusion of this key.
ROSIC then cross-references this token with its database,
assessing its authenticity and the associated permissions. If
the token aligns with the permissions and is authenticated,
the user or operator request is executed. Otherwise, it
declines.

- Otganiser: In ROSIC, the organiser plays a key role, pti-
marily in implementing detailed permissions termed as

85UBD 17 SUOWWIOD BAIFER1D) 3|qedldde au Ag pausenob afe S VO ‘3N 40 S3|NJ 104 Ar1g1IT 8UIIUO AB]IM UO (SUOTIPUOD-PUR-SWLBH LD 3| 1M AReIq 1 BU1|UO//SANY) SUORIPUOD PUe SWie | 8L} 88S *[7202/€0/0€] Uo Areiqiauiiuo A8IM ‘89 L Ad ZTTZT 2AS0/610T 0T/I0p/W00 A8 | IM A RIq 1 [PUUO"YDeesa.18 1//:SONY W04 PAPRO|UMOQ ‘2 ‘¥202 ‘STEITEIE

4 of 17 |

SADEGHIAN ET AL.

Algorithm 1 ROSIC general structure based on its main components, authoriser, organiser, container, and

linker

Data: userCredentials, userCommand

Result: “Command relayed” or “Error in processing request”

1 if AUTHENTICATE(userCredentials) then

2 return“Error in processing request.”

3 Procedure AUTHENTICATE(credentials)
Data: User credentials

Result: Boolean indicating if credentials are valid
4 returncredentials are valid against the database

5 Procedure GENERATEKEY(credentials)
Data: User credentials

Result: Unique session key
6 | returnuniqueKey for the session

7 Procedure CHECKPERMISSIONS(key, command)
Data: Authorization key, User command

8 returnkey matches permissions for command

9 Procedure PROCESSCOMMAND(command)
Data: User command

Result: Refined command
10 | returnoptimize and refine command for robot

11 Procedure RELAYCOMMAND(processedCommand)
Data: Processed command

Result: Boolean indicating if command is relayed
12 returncommand is successfully sent to robot

// Authorizer: Validates user credentials
authorizationK ey < GENERATEKEY (userCredentials) // Buthorizer: Generates a unique
session key if CHECKPERMISSIONS(authorizationKey, userCommand) then
// Organizer: Validates command permissions
processedCommand < PROCESSCOMMAND (userCommand) // Container: Refines user
command if RELAYCOMMAND(processedCommand) then
L // Linker: Sends command to robot return“Command relayed.”

Result: Boolean indicating if key has permissions for command

scopes. For example, a user or operator might possess the
scope to read messages but be restricted from sending them.
The organiser diligently verifies the scopes tied to a uset's ot
operatot's token, ensuring actions are strictly within their
permitted boundaries. Additionally, to safeguard against
misuse and maintain equitable usage, ROSIC enforces rate
limits. This constrains the number of requests a user or
operator can initiate within a specified duration. The orga-
niser evaluates not only the uset's or operatot's access level
but also whether the rate limits are adhered to. In situations
where there is a hint of inappropriate use or when a user or
opetatot's access becomes redundant, the organiser remains
the authority to invalidate the ROSIC authorisation key,
effectively terminating access for the implicated user or
operator.

Container: A container is a secure, isolated environment
within the system that holds specific data, permissions and
functionalities. It encapsulates user and operator informa-
tion, their associated scopes, rate limits and other relevant
details, ensuring that each uset's or operatot's interactions
are confined to their designated boundaries. The core attri-
butes of a container are: 1. Isolation: to ensure that each
uset's or operatot's actions, data and permissions are kept
separate from others, preventing unintended interference or
data breaches. 2. Security: by encapsulating data and per-
missions within a container, ROSIC can offer an added layer
of protection against unauthorised access or potential vul-
nerabilities. 3. Flexibility: to allow ROSIC to easily allocate or
modify resources, permissions and functionalities for indi-
vidual users or operators without affecting the overall

85UBD 17 SUOWWIOD BAIFER1D) 3|qedldde au Ag pausenob afe S VO ‘3N 40 S3|NJ 104 Ar1g1IT 8UIIUO AB]IM UO (SUOTIPUOD-PUR-SWLBH LD 3| 1M AReIq 1 BU1|UO//SANY) SUORIPUOD PUe SWie | 8L} 88S *[7202/€0/0€] Uo Areiqiauiiuo A8IM ‘89 L Ad ZTTZT 2AS0/610T 0T/I0p/W00 A8 | IM A RIq 1 [PUUO"YDeesa.18 1//:SONY W04 PAPRO|UMOQ ‘2 ‘¥202 ‘STEITEIE

SADEGHIAN ET AL.

| 5 0f 17

system. 4. Efficiency: to streamline the process of managing
multiple users or operators, each container can be treated as
a standalone unit, making it easier to monitor, update, or
troubleshoot.

- Linker: In ROSIC's framework, a [inker is a tool that
connects various ROSIC components to each other,
ensuring seamless communication and interaction. It acts as
a bridge, facilitating the transfer of data, requests, and re-
sponses between the uset's or operatot's container and the
central ROSIC system. The main features of the [inker
include the following: 1. Integration: the linker ensures that
all the system components, regardless of their individual
configurations or data, can interact with the main ROSIC
system without compatibility issues. 2. Data Flow: It man-
ages the flow of data between containers and the main
system, ensuring that requests and responses are directed to
the appropriate destinations. 3. Scalability: As ROSIC grows
and more users or operators are added, the linker can
efficiently connect new containers to the system without
disrupting existing operations. 4. Monitoring and Control:
The linker provides a central point for ROSIC to monitor
interactions, enforce rate limits and wvalidate authorisation
keys across all conmtainers. In fact, while the container
provides a secure and isolated environment for each user or
operatot, the linker ensures that these individual units can
effectively communicate and interact with the broader
ROSIC system.

The efficacy of ROSIC is underpinned by the intricate
interplay of its architectural components. Each component
not only performs its designated role but also seamlessly
integrates with others, ensuring the system's holistic func-
tionality. The process commences with the authoriser, which
validates user credentials and grants a unique authorisation
key for authenticated sessions. This key becomes instrumental
for the orgamiser, which, building upon the authentication,
regulates user interactions by cross-referencing permissions
associated with the key. As commands are issued, the
container steps in, processing these commands in a secure
environment. Its functionality is deeply intertwined with the
validation of the authoriser and the regulatory oversight of
the organiser. Finally, the linker acts as the communication
conduit, relaying the refined commands from the container to
the robot. It ensures that the communication is not only
accurate but also secure, drawing from the collective valida-
tions and checks of its preceding components. Together,
these components of ROSIC work in tandem, offering a
robust and efficient telecommunication framework for ro-
botic systems.

2.2 | Scenarios for robot control

Several scenarios can be outlined where ROSIC serves as a
telecommunication system to streamline communication be-
tween robots and their users or operators. These include:

- One user or operator communicates with one robot:
When an operator initialises control over a robot, ROSIC's
container functionality seamlessly integrates the robot's
operational parameters and task-specific configurations,
aligning them with the operator's specific needs [27].
This integration establishes a deterministic operational
framework, enhancing the robot's efficiency and precision
for its designated tasks. ROSIC's [linker component
stands as a pivotal bridge, enabling instantaneous bidirec-
tional communication. As the operator issues commands or
tweaks parameters, the robot's sensors promptly provide
feedback, facilitating swift and dynamic modifications. This
capability for immediate interaction is indispensable, espe-
cially for tasks demanding high levels of adaptability
and rapid responsiveness. Additionally, ROSIC's advanced
monitoring features offer the operator a comprehensive
view of the robot's operational metrics, ensuring that tasks
align with set benchmarks. Should any deviations arise,
ROSIC's sophisticated control algorithms spring into action,
recalibrating the robot's functions to meet the stipulated
criteria.

Utilising ROSIC within the framework where a single
operator interfaces with an individual robot offers trans-
formative potential across a spectrum of industries. Specif-
ically: (1) Autonomous Vehicle Fleets: With ROSIC, an
operator can oversee the real-time operations of a self-driving
vehicle, making on-the-fly decisions based on traffic flow, road
conditions and adaptive rerouting strategies. (2) Smart Grid
Management: In power grids, an operator can utilise ROSIC to
control a robot responsible for tasks, such as optimal load
distribution, swift fault detection and proactive maintenance.
(3) Forestry Management: In forested regions, an operator can
harness ROSIC to direct a robot in tasks like monitoring forest
health, early fire detection, and overseeing unauthorised
activities.

Algorithm 2 outlines the interaction between a single
operator and a robot through the ROSIC system. The process
commences with the initializeOperator function,
enabling an operator to establish its control preferences. The
assignTask function lets the operator assign a task to the
robot only if it is currently idle. Through the getFeedback
function, the operator can instantaneously receive data from
the robot, exemplifying real-time bidirectional communication.
The adjustRobotSettings function facilitates the
operator in tweaking the robot's configurations dynamically,
while the recalibrateRobot function ensures that the
robot's functionalities can be recalibrated to maintain align-
ment with set benchmarks or criteria.

- Multiple users or operators interacting with one robot:
In this scenario, ROSIC acts as the backbone of the oper-
ation, providing a structured, secure and efficient framework
for multiple users to access and control a single robot [28].
Its features ensure that each uset's interactions are isolated,
the data are managed effectively and the robot operates

85UBD 17 SUOWWIOD BAIFER1D) 3|qedldde au Ag pausenob afe S VO ‘3N 40 S3|NJ 104 Ar1g1IT 8UIIUO AB]IM UO (SUOTIPUOD-PUR-SWLBH LD 3| 1M AReIq 1 BU1|UO//SANY) SUORIPUOD PUe SWie | 8L} 88S *[7202/€0/0€] Uo Areiqiauiiuo A8IM ‘89 L Ad ZTTZT 2AS0/610T 0T/I0p/W00 A8 | IM A RIq 1 [PUUO"YDeesa.18 1//:SONY W04 PAPRO|UMOQ ‘2 ‘¥202 ‘STEITEIE

6 of 17 |

SADEGHIAN ET AL.

Algorithm 2 ROSIC general structure for controlling a robot by an operator

Data: operator = {}, robot = {“status”: “idle”, “data”: {}, “config”: {}}, tasksQueue = {}
Result: Management of a robot by a single operator

1 Function initializeOperator (operatorlD, preferences)
2 L operator = {“ID”: operatorID, “preferences”: preferences}

3 Function assignTask (task)

4 if robot[“status”] == “idle” then
5 robot[“status”] = “active”

6 L tasksQueue.append(task)

7 Function getFeedback ()
8 L return robot[“data”]

9 Function adjustRobotSettings (settings)

10 Lrobot[“conﬁg”].update(settings)

11 Function recalibrateRobot (calibrationData)
12 L robot[“config”’][“calibration”] = calibrationData

seamlessly. One of ROSIC's standout features is its dynamic
scheduling capability. By leveraging algorithmic time-slot
allocations, ROSIC ensures optimal robot utilisation, mini-
mises idle times and prevents access conflicts. Furthermore,
its granular permissioning system, underpinned by a robust
authoriser mechanism, facilitates role-based access. This
means that a senior user's interaction with the robot can be
qualitatively different from that of a junior user based on
predefined roles and permissions. The /inker component in
ROSIC acts as a communication bridge, ensuring real-time
data transfer, command execution, and feedback loops be-
tween the user interface and the robot's operational module.
From a data integrity standpoint, ROSIC's container
approach offers unparalleled advantages. Post-operational
data are stored within the confines of the individual's
container, ensuring data sanctity and preventing potential
breaches.

Some of the applications of using ROSIC based on this
scenario include: (1) Medical Robotics: Different medical
professionals access a surgical robot for various procedures in
a hospital setting. (2) Educational Institutions: Students and
instructors access a shared robot for different experiments or
demonstrations. (3) Research Laboratories: Multiple re-
searchers access a specialised robot for different experiments
or data collection sessions. (4) Manufacturing Units: Different
technicians access a robot for various tasks throughout a
production cycle. (5) Entertainment Industry: Multiple pro-
grammers or designers programme a robot for different scenes
or performances.

Algorithm 3 manages multiple users' access to a single
robot within the ROSIC framework. The user dictionary stores
user details, with each user having a userID (a unique
identifier), role (like senior or junior), timeSlot (a
designated period for robot access) and permissions
(allowed tasks). The robotStatus indicates whether the

robot is idle or active. At any point, the activeUser
variable denotes the user currently interfacing with the robot.
The addUser function registers users, accessRobot
checks if a user can access the robot based on the current time
and their time slot, storeData saves user-specific data, and
endSession terminates an active user's interaction with the
robot. This structure ensures sequential non-conflicting access
for users.

- One user or operator interfacing with multiple robots:
One of the main applications of this scenario is robot fleet
management. In large-scale operations, such as warehouses,
logistics centres or manufacturing units, a fleet of robots is
often deployed to optimise processes and improve efficiency.
A single manager or operator, using ROSIC, oversees this
fleet, ensuring synchronised operations, task allocations and
real-time monitoring. In this scenario, the manager can uti-
lise ROSIC's container feature to encapsulate configura-
tions, tasks and data specific to each robot in the fleet. This
ensures that each robot operates within its designated pa-
rameters, preventing operational conflicts. As the manager
assigns tasks or modifies operations, the linker ensures that
commands are instantly relayed to the respective robots,
allowing for dynamic task reallocation based on real-time
needs. For instance, if one robot faces a malfunction or is
delayed, tasks can be swiftly reassigned to another robot in
the fleet. Furthermore, ROSIC's monitoring capabilities
enable the manager to get a bird's-eye view of the entire
fleet's operations. This not only aids in identifying bottle-
necks or inefficiencies but also ensures timely interventions
in cases of anomalies. Leveraging ROSIC in the context of
the first scenario can be transformative across various sec-
tors, such as: (1) Agriculture: ROSIC can empower farmers
to seamlessly control a fleet of robots, streamlining tasks,
such as planting, harvesting and real-time crop monitoring.
(2) Warechouse Management: Warehouse operators can

85UBD 17 SUOWWIOD BAIFER1D) 3|qedldde au Ag pausenob afe S VO ‘3N 40 S3|NJ 104 Ar1g1IT 8UIIUO AB]IM UO (SUOTIPUOD-PUR-SWLBH LD 3| 1M AReIq 1 BU1|UO//SANY) SUORIPUOD PUe SWie | 8L} 88S *[7202/€0/0€] Uo Areiqiauiiuo A8IM ‘89 L Ad ZTTZT 2AS0/610T 0T/I0p/W00 A8 | IM A RIq 1 [PUUO"YDeesa.18 1//:SONY W04 PAPRO|UMOQ ‘2 ‘¥202 ‘STEITEIE

SADEGHIAN ET AL.

7 of 17

Algorithm 3 ROSIC general structure for one user or operator interfacing with multiple robots

Data: users = {}, robotStatus = “idle”, activeUser = None
Result: Manage multiple users accessing a single robot

1 Function addUser (userID, role, timeSlot, permissions)

| users[userID] = {“role”: role, “timeSlot”: timeSlot, “permissions”: permissions, “data”: {}}

Function accessRobot (userID, currentTime)
user = users[userID]

activeUser = userID

2

3

4

5

6 robotStatus = “active”
7

8 return “Access granted.”
9

return “Access denied.”

10 Function storeData (userID, data)
11 if activeUser == userID then
12 L users[userID][“data”] = data

13 return “Data stored.”

14 | return “Error storing data.”
15 Function endSession (userID)
16 if activeUser == userID then
17 robotStatus = “idle”

18 activeUser = None

19 return “Session ended.”
20 return “Error ending session.”

if robotStatus == “idle” and user[“timeSlot”]["start”] < currentTime < user[“timeSlot”][“end”] then

harness ROSIC to efficiently manage a cadre of robots,
ensuring precise inventory management, timely restocking,
and swift order fulfilment. (3) Environmental Exploration:
In critical search missions, operators can utilise ROSIC to
coordinate a diverse mix of aerial and ground-based robots,
ensuring comprehensive coverage across challenging terrains
and swift response times. (4) Traffic Management: Traffic
controllers can leverage ROSIC to oversee a fleet of aerial
robots, facilitating real-time traffic surveillance, congestion
analysis, and incident reporting. In each of these applica-
tions, ROSIC's robust architecture ensures efficient
communication, task allocation and real-time adjustments,
optimising the performance of robotic fleets.

Algorithm 4 illustrates how a single user or operator can
effectively manage multiple robots within a fleet. It starts by
initialising crucial data structures, including a dictionary to
represent the robot fleet, the currently active robot and a queue
for tasks. The algorithm defines essential functions, such as
addRobot to include robots in the fleet along with their
configurations; assignTask to assign a task to a specific
robot if it is idle; switchRobot to change the active robot;
getFeedback to retrieve feedback data from a specific
robot and reallocateTask to reallocate a task from one
robot to another if a new robot is available. These functions
collectively illustrate how a single user or operator can manage
a fleet of robots by adding, assigning, switching between them,

retrieving feedback and reallocating tasks when necessary
through the ROSIC middleware.

- An exclusive communication system for robot-to-robot
interactions: In expansive operations, especially in dynamic
environments, the ability for robots to communicate and
collaborate becomes paramount. Each robot, upon deploy-
ment, is initialised with ROSIC's container feature, which
encapsulates its operational parameters and task-specific
configurations. This ensures that each robot operates
within its designated parameters, optimising its performance
for the given task. ROSIC's linker component facilitates
real-time bidirectional data transfer not only between the
operator and each robot but also between the robots
themselves. Furthermore, ROSIC's monitoring capabilities
provide a holistic view of the entire robot's operations. This
not only aids in identifying bottlenecks or inefficiencies but
also ensures timely interventions in cases of anomalies in
robot operations. In scenarios where a robot faces a chal-
lenge it cannot overcome alone, other robots, informed via
the telecommunication system, can aid or adjust their tasks
accordingly.

Utilising ROSIC within the framework of the first
scenario offers transformative potential across a spectrum
of industries. Specifically: (1) Autonomous Vehicle Fleets:
ROSIC facilitates real-time data exchange among self-driving

85UBD 17 SUOWWIOD BAIFER1D) 3|qedldde au Ag pausenob afe S VO ‘3N 40 S3|NJ 104 Ar1g1IT 8UIIUO AB]IM UO (SUOTIPUOD-PUR-SWLBH LD 3| 1M AReIq 1 BU1|UO//SANY) SUORIPUOD PUe SWie | 8L} 88S *[7202/€0/0€] Uo Areiqiauiiuo A8IM ‘89 L Ad ZTTZT 2AS0/610T 0T/I0p/W00 A8 | IM A RIq 1 [PUUO"YDeesa.18 1//:SONY W04 PAPRO|UMOQ ‘2 ‘¥202 ‘STEITEIE

8 of 17 |

SADEGHIAN ET AL.

vehicles, enabling them to share insights on traffic flow, road
conditions and adaptive rerouting strategies. (2) Smart Grid
Management: Within power grids, robots can utilise ROSIC
to communicate effectively, ensuring optimal load distribu-
tion, swift fault detection and proactive maintenance. (3)
Forestry Management: In forested regions, robots can
harness ROSIC to relay information concerning forest
health, early fire detection and monitoring of unauthorised
activities.

Algorithm 5 presents how the ROSIC middleware enables
the coordination and control of numerous robots through
integration with a telecommunication system. It commences
by initialising essential data structures, including dictionaries to
represent robots, a task queue and shared data. The algorithm
defines crucial functions: initializeRobot to add ro-
bots to the system along with their parameters; assign-
Task to assign tasks to robots if they are idle; shareData
to share data among robots; getSharedData to retrieve

Algorithm 4 ROSIC general structure as a robot fleet management system with single user

Data: robotFleet = {}, activeRobot = None, tasksQueue = {}
Result: Fleet management of multiple robots by a single user/operator

1 Function addRobot (robotID, configuration)
2 L robotFleet[robotID] = {“config”: configuration, “status”: “idle”, “data”: {}}

3 Function assignTask (robotlD, task)

e AN N B

L activeRobot = robotID

9 Function getFeedback (robotID)
10 L return robotFleet[robotID][“data’]

Function switchRobot (robotID)

if robotFleet[robotID][“status”] == “idle” then
robotFleet[robotID][“status™] = “active”
tasksQueue.append({ “robot”: robotID, “task”: task})

11 Function reallocateTask (oldRobotID, newRobotID, task)

12 if robotFleet[newRobotID][“status”] == “idle” then

13 robotFleet[oldRobotID][“status”] = “idle”

14 robotFleet[newRobotID][“status”] = “active”

15 tasksQueue.remove({ “robot”: oldRobotID, “task”: task})
16 tasksQueue.append({“robot”: newRobotID, “task”: task})

Algorithm 5 ROSIC general structure for the integration of multiple robots with the telecommunication

system

Data: robots = {}, tasksQueue = {}, sharedData = {}
Result: Management of multiple robots with telecommunication system integration

1 Function initializeRobot (robotlD, parameters)
2 L robots[robotID] = {“config”: parameters, “status”: “idle”, “data”: {}}

3 Function assignTask (robotID, task)

4 if robots[robotID][“status”] == “idle” then
5 robots[robotID][“status”] = “active”
6 tasksQueue.append({“robot”: robotID, “task”: task})

7 Function shareData (robotID, data)

8 | sharedData[robotID] = data

9 Function get SharedData (robotID)

10 L return sharedData[robotID]

11 Function adjustStrategy (robotID, newStrategy)
12 L robots[robotID][“config”][“strategy”] = newStrategy

85UBD 17 SUOWWIOD BAIFER1D) 3|qedldde au Ag pausenob afe S VO ‘3N 40 S3|NJ 104 Ar1g1IT 8UIIUO AB]IM UO (SUOTIPUOD-PUR-SWLBH LD 3| 1M AReIq 1 BU1|UO//SANY) SUORIPUOD PUe SWie | 8L} 88S *[7202/€0/0€] Uo Areiqiauiiuo A8IM ‘89 L Ad ZTTZT 2AS0/610T 0T/I0p/W00 A8 | IM A RIq 1 [PUUO"YDeesa.18 1//:SONY W04 PAPRO|UMOQ ‘2 ‘¥202 ‘STEITEIE

SADEGHIAN ET AL.

| 9 of 17

shared data from a specific robot and adjustStrategy to
modify the strategy of a robot. These functions collectively
portray how the ROSIC middleware facilitates the manage-
ment of multiple robots within a telecommunication sys-
tem, enabling task assignment, data sharing and strategy
adjustment.

3 | INTEGRATION WITH TELEGRAM

Telegram Instant Messenger is a suitable choice for imple-
menting ROSIC for several compelling reasons, such as: (1)
Open-Source Nature: Being open-source, Telegram allows
developers to access its source code, facilitating customisation,
improvements and integration with systems such as ROSIC
without any licencing restrictions. (2) End-to-End Encryption:
Telegram offers end-to-end encryption for secret chats,
ensuring secure communication. This security feature is crucial
when controlling robots remotely, as it safeguards commands
and feedback from potential interception or tampering. (3)
Cloud-Based Architecture: Telegram's cloud-based approach
ensures that messages (commands for robots within the
context of our research) are stored securely and can be
accessed from multiple devices. This allows for a seamless and
continuous control experience even if one device encounters
issues. (4) Cross-Platform Support: Telegram is compatible
across a variety of devices, including smartphones, tablets and

Robotic
Systems

computers running on different operating systems. This flex-
ibility ensures that a wide range of users can control robots
without the need for specialised hardware. (5) Large File
Transfer: With the ability to send files up to 2 GB, Telegram
can effectively handle large datasets or software updates for
robots, facilitating on-the-fly adjustments or improvements to
robot functions. (6) User-Centred Interface: Telegram is
designed with a user-centred interface, making it accessible
even to non-technical users. This aligns with ROSIC's goal to
design robot controls with a user-centred approach. (7)
Interactive Communication Capabilities: Features such as
group chats and channels in Telegram can be harnessed for
scenarios where multiple users need to communicate with or
control a single robot or a group of robots. Given these at-
tributes, Telegram can serve as a robust and versatile platform
for implementing ROSIC, promoting secure, efficient and
user-centred remote robot control.

Figure 2 illustrates the core of the Internet based tele-
communication system: a setup based on the ROSIC middle-
ware integrated with the Telegram API. As depicted in
Figure 2, any device that can run the Telegram application,
ranging from mobile phones and single-board computers, such
as Raspberry Pi, to personal computers and laptops, can
communicate via ROSIC over the Internet.

Algorithm 6 begins with the initialisation of the Telethon
library, a Python framework tailored for the Telegram API,
enabling our programme to interact with Telegram and extract

— e

of running the
Telegram app

FIGURE 2 The foundational telecommunication architecture of ROSIC middleware in conjunction with the Telegram API, optimised to streamline and

enhance the communication management process. API, Application Programming Interface; ROSIC, Robot Control System using Instant Communication.

Algorithm 6 Save Telegram group messages to file (container)

Data: API_ID (Your Telegram API ID), API_HASH (Your Telegram API Hash), GROUP_ID_OR_LINK (Your Telegram

Group Link or ID), FILE_NAME (messages.txt)

Result: Messages from the Telegram group saved to a text file

: Initialize TELETHON LIBRARY

: while client is connected do

if NEW MESSAGE in GROUP_ID_OR_LINK then
SENDER < Get sender of the message
Open FILE_NAME in append mode as “file”

A G S o

TEXT to “file”

: Create TELEGRAM CLIENT using API_ID and API_HASH named “client”

Write “Sender ID: ”, SENDER’s ID, “, Sender Username: ”, SENDER’s USERNAME, “, Message: ”, MESSAGE

85UBD 17 SUOWWIOD BAIFER1D) 3|qedldde au Ag pausenob afe S VO ‘3N 40 S3|NJ 104 Ar1g1IT 8UIIUO AB]IM UO (SUOTIPUOD-PUR-SWLBH LD 3| 1M AReIq 1 BU1|UO//SANY) SUORIPUOD PUe SWie | 8L} 88S *[7202/€0/0€] Uo Areiqiauiiuo A8IM ‘89 L Ad ZTTZT 2AS0/610T 0T/I0p/W00 A8 | IM A RIq 1 [PUUO"YDeesa.18 1//:SONY W04 PAPRO|UMOQ ‘2 ‘¥202 ‘STEITEIE

10 of 17 |

SADEGHIAN ET AL.

messages from a group chat. During the initialisation, key data
points and their unique credentials from Telegram for appli-
cation authentication (API ID and API HASH) are estab-
lished. Furthermore, we define the specific Telegram group of
interest through GROUP_ID OR LINK and the storage
location for the messages with FILE NAME. By default, we
choose ‘messages.txt’ as the filename (container).

Upon creating a Telegram client using the aforementioned
credentials, the algorithm enters its primary loop, continuously
monitoring the designated group for new messages. When a
new message is detected, the sender's details are retrieved and
the message, along with the sendet's information, is appended
to the specified file. This ensures a comprehensive record of
both the message and its sender. The algorithm remains
operational, archiving messages in real-time until an external
factor, such as a disconnection or programme termination,
interrupts it. Consequently, all messages from various users or
operators are stored in a text file within the ROSIC system.

Algorithm 7 presents the operational framework of a Tele-
gram bot, which is tailored to manage user interactions based on

permissions and identity verification via ROSIC. Initially, the bot
is initialised with a unique TOKEN, which is essential for its
operation on the Telegram platform. The algorithm comprises
several functions. The verify identity (user id)
function assesses if a user, identified by their user id, pos-
sesses permission based on a predetermined schedule. The
verify identity(user id) function ascertains the
user's identity, returning a Boolean value indicating its success ot
failure. To determine if a user has the requisite permissions to
access specific information, the has accessibility -
permission (user id) is defined. The start (update,
context) function is activated when the bot starts or when a user
initiates a conversation, checking the uset's schedule-based
permission and sending a corresponding reply. The han-
dle message (update, context) function manages
incoming user messages, verifies user identity and responds
based on the content of the message and user permissions. The
main () function serves as the core of the algorithm. It ini-
tialises the bot using the provided TOKEN, configures com-
mand handlers, especially for the start command, and sets up a

Algorithm 7 The operational framework of ROSIC integrated with a Telegram bot: Tailoring user interactions

with permissions and identity verification

Data: TOKEN initialized with “YOUR_TELEGRAM_BOT_TOKEN”

verify_identity (user_id);

start (update, context) ;

0NN AW~

—
— O O

else

—_
[\

—
~ W

user_id, text <— get from update;

—_— =
~N O\

return;

[N S
— O O ™

else

N
\S)

main();
updater < create with TOKEN;

[NST SO T (O I NS I\
~N O\ kW

Start updater;

NN
O oo

Execute main ();

user_id < get user_id from update;
if has_schedule_permission (user_id) then
‘ Send reply “You have permission to send and receive commands.”;

handle_message (update, context);

if text is “request information” then
if has_accessibility_permission (user_id) then
‘ Send reply “Here’s the information you requested.”;

Add start command handler to updater;
Add message handler for non-command text to updater;

Keep updater running until interrupted;

has_schedule_permission (user_id) ;
return True or False based on the schedule;

return True or False based on identity verification;
has_accessibility_permission (user_id) ;
return True or False based on accessibility permission;

L Send reply “You do not have permission to send and receive commands.”;

if not verify_identity (user_id) then
Send reply “Identity verification failed. Communication terminated.”;

L Send reply “You do not have permission to access this information.”;

85UBD 17 SUOWWIOD BAIFER1D) 3|qedldde au Ag pausenob afe S VO ‘3N 40 S3|NJ 104 Ar1g1IT 8UIIUO AB]IM UO (SUOTIPUOD-PUR-SWLBH LD 3| 1M AReIq 1 BU1|UO//SANY) SUORIPUOD PUe SWie | 8L} 88S *[7202/€0/0€] Uo Areiqiauiiuo A8IM ‘89 L Ad ZTTZT 2AS0/610T 0T/I0p/W00 A8 | IM A RIq 1 [PUUO"YDeesa.18 1//:SONY W04 PAPRO|UMOQ ‘2 ‘¥202 ‘STEITEIE

SADEGHIAN ET AL.

| 11 of 17

message handler for the non-command text. Once these con-
figurations are in place, the bot is activated and remains in
operation until an external interruption occurs.

Algorithm 8 initially sets up an ROS 2 node named cha-
t_interface, a computational entity in ROS 2 designed for
data processing and communication with other nodes. This
node's primary role is to act as a bridge between the chat system
and the robot. Two main functions are defined: robot -
callback(data) and send to robot (message).
The former is crafted to manage incoming data from the robot,
display the received message and offer a placeholder for further
integration to relay this message to the chat system. The latter
function, on the other hand, is responsible for transmitting
messages to the robot, publishing them to a specific ROS 2 topic
and showcasing the sent message.

To ensure continuous communication, the pseudocode
establishes a subscription to the from robot topic,
enabling the node to listen for messages on this topic and
triggering the robot callback function upon receipt of
any message. To verify the connection, ROSIC also sends an
initial greeting to the robot using the send to robot
function. The process concludes with the node entering a spin
state, signifying its readiness to perpetually process data and
await any callbacks, ensuring uninterrupted interaction be-
tween the chat system and the robot.

4 | PERFORMANCE AND EFFICIENCY
ANALYSIS

The performance and efficiency of ROSIC can be gauged
through several critical parameters: (1) Latency, which mea-
sures the time taken for a command to reach its destination, is
paramount for real-time interventions. (2) Throughput, in-
dicates the system's capacity by assessing the number of
messages processed per unit time. (3) Scalability, as ROSIC is

designed to cater to multiple users and robots, its scalability,
both in terms of the number of users and robots, becomes
crucial. This scalability analysis should evaluate how the system
performs with increasing concurrent users or robots. (4)
Resource utilisation, including Central Processing Unit (CPU),
memory and bandwidth consumption, provides a lens into the
system's efficiency and potential bottlenecks. Additionally,
from a user-centric perspective, (5) Security is always an
important concern, and can be assessed by tracking the time
taken for user authentication (Authentication Time) and
monitoring any unauthorised access attempts.

To assess the critical parameters influencing the perfor-
mance of telecommunication systems utilising ROSIC middle-
ware, we conducted tests on an NVIDIA ®]etson Orin Nano™
platform. The test environment operated on a network with
upload and download speeds of 26 Mbps each. Although pin-
pointing the exact latency of message transmission in ROSIC via
Telegram is complex due to network variables, we approximated
latency by measuring the time taken for message dispatch and
response receipt. Notably, this method may not provide absolute
latency precision due to inherent network speed fluctuations,
server load dynamics, and other factors. Figure 3 shows the
obtained results based on the latency test and the time stamps.
The results are collected based on Algorithm 9. To measure the
telecommunication latency of ROSIC via the Telegram API,
Algorithm 9 utilises the “TelegramClient* from the Telethon li-
brary. It initialises a client using unique developer credentials
(API_IDand API HASH), sends a test message to the uset's
own account, and calculates the time difference between sending
and acknowledgement. This process is repeated 100 times to
account for network variability. Each latency measurement,
paired with its timestamp, is stored in a structured list. The
accumulated data are then compiled into a DataFrame and
saved as a uniquely timestamped Excel file, providing a
comprehensive record of the API's responsiveness. Figure 4
shows the results for 10 latency tests with the associated error

Algorithm 8 Communication between ROSIC middleware and ROS 2 robot

Data: data (from robot), message (to robot)
Result: Communication between chat system and ROS 2 based robot

/I Integrate logic here to send this message to the chat system

CREATE SUBSCRIPTION to “from_robot_topic” with robot_callback

1 begin

2 Initialize ROS 2 node as “chat_interface”

3 Function robot_callback (data) :

4 DISPLAY “Received from robot: ” + data

5

6 Function send_to_robot (message) :

7 PUBLISH message to “to_robot_topic”

8 DISPLAY “Sending to robot: ” + message

9 /I Create a subscription to the ROS 2 topic “from_robot_topic”
10
11 /I For demonstration, send a greeting to the robot
12 CALL send_to_robot(message)
13 | // Keep the node active and listening
14 SPIN node indefinitely

85UBD 17 SUOWWIOD BAIFER1D) 3|qedldde au Ag pausenob afe S VO ‘3N 40 S3|NJ 104 Ar1g1IT 8UIIUO AB]IM UO (SUOTIPUOD-PUR-SWLBH LD 3| 1M AReIq 1 BU1|UO//SANY) SUORIPUOD PUe SWie | 8L} 88S *[7202/€0/0€] Uo Areiqiauiiuo A8IM ‘89 L Ad ZTTZT 2AS0/610T 0T/I0p/W00 A8 | IM A RIq 1 [PUUO"YDeesa.18 1//:SONY W04 PAPRO|UMOQ ‘2 ‘¥202 ‘STEITEIE

12 of 17 SADEGHIAN ET AL.

300
250

200

(2]

E

> 150

2

[0

E 100 : A 1 |
50 \ N /\ A A A A r /\ . /\ N A A \/\

VLA UV N VW W \/ V" A7 N\ UN

R DD »
NN NN NN NSNS NNV NS NN NSNS NN NS NN NN NN NN N NN

DA DD D A D D D D D D D D DD D DD D D D DD G i L R A S R i R e i ROl

F S FEE f FI I SIS ISSSSF S

CARAPRATE IR SR IR IR D AR AP AN APE I SPE P PR I PR PR PERIE IR FE T

2
2,
3

)

)

2
2
N
2,
2
2
2,
2,
2
Y
2
Y
2
2
2
2
2y
2
2
2
2

4
<
<
<
<
<
<
<
<
<
N
=
<

7
<
<
<
<
<
=
<
<
<
<
R

FTFI IS IFIIFIFIIFTSIIFIIFIFIFIIFISIFSFFSF I of o
V. QY VIV VARSI BRI AR RN R IR AR R SN R RN R N N R W R R S R RS S A R RN R N N R R R R 2
S e S S S S i S i i i S I S i i i S i R R S A S

Q-
» v
time

2
2
2
2
<
>
2
2
2
2
2
2
2
2
2
<y
>
2
2
2
2
<y
2
2
<
<
2
2

FIGURE 3 Latency test outcomes via Algorithm 9, integrating Telegram API with ROSIC. Through 100 test messages, the algorithm gauges latency, with a
peak nearing 250 ms during the assessment.

Algorithm 9 Measure the telecommunication latency of ROSIC via the Telegram API

Data: API_ID (Your Telegram API ID), API_HASH (Your Telegram API Hash)
Result: Excel file with latency results
begin

1:
2 Function measure_latency begin
3 client < Initialize TelegramClient with ‘session_name’, API_ID, and API_HASH;
4: Start client;
5: start_time < Current time;
6 Send message to self (‘me’) with content ‘Testing latency’;
7 end_time < Current time;
8 Disconnect client;
9: latency < (end_time - start_time) x 1000;
10: return latency;
11: latency_data <— Empty list;
12: for i=1 to 100 do
13: timestamp <— Current time in format “YYYY-MM-DD HH:MM:SS”;
14: latency < measure_latency();
15: Append { ‘Timestamp’: timestamp, ‘Latency (ms)’: latency } to latency_data;
16: Print latency value;
17: df < Create DataFrame from latency_data;
18: timestamp <— Current time in format “YYYY-MM-DD_HH-MM-SS”;
19: excel_file <— “latency_results_” + timestamp + “.xIsx”;
20: Save df to Excel file named excel_file;
21: Print “Latency results saved to ” + excel_file;
bars, where the maximum latency observed based on the messages via the Telegram platform. Initially, the algorithm
employed hardware and network conditions remained below establishes a connection to the Telegram servers using the API
250 ms. credentials. The algorithm then sets parameters such as the end
Algorithm 10 presents a systematic approach to evaluate time for the test, based on the given test duration, and ini-
the reliability and throughput of the transmission of ROSIC tialises counters to track the number of messages sent, the

85UBD 17 SUOWWIOD BAIFER1D) 3|qedldde au Ag pausenob afe S VO ‘3N 40 S3|NJ 104 Ar1g1IT 8UIIUO AB]IM UO (SUOTIPUOD-PUR-SWLBH LD 3| 1M AReIq 1 BU1|UO//SANY) SUORIPUOD PUe SWie | 8L} 88S *[7202/€0/0€] Uo Areiqiauiiuo A8IM ‘89 L Ad ZTTZT 2AS0/610T 0T/I0p/W00 A8 | IM A RIq 1 [PUUO"YDeesa.18 1//:SONY W04 PAPRO|UMOQ ‘2 ‘¥202 ‘STEITEIE

SADEGHIAN ET AL.

| 13 of 17

250

200

o] H{]]M I

{ Mean % Std. Dev.

s A Rt

OONOCNOND—OIOND = MO N
CFECFCFANNNNAOOOOO S S S S
Sa

63

)
NN~

89
91
93
95
97

N~ O N O «— — M0 N
L0 O © © © O~ 00 0O O ©

umbe

D53
3555

o —
< O
mpl

-

FIGURE 4 Ten latency tests depicted with corresponding error bars. In the context of the hardware and network specifications detailed in this paper for the

ROSIC via the Telegram API system, the maximum observed latency remained below 250 ms.

Algorithm 10 Success rate and throughput assessment of ROSIC via the Telegram API messaging

Data: API credentials, recipient username,

message content, test duration, send interval

Result: Success rate in percentage, Throughput in bytes/second

1 begin

2 Initialize Telegram client with API credentials;

3 Connect to the client;

4 Set recipient using recipient username;

5 Set end time as current time + test duration;

6 num_messages_sent <— 0;

7 num_messages_successful < 0;

8 total_data_sent < O;

9 while current time < end time do

10 Attempt to send message to recipient with content message content;
11 if message send is successful then

12 Increment num_messages_successful;

13 Add size of message content to total_data_sent;
14 else

15 L Print exception message;

16 Increment num_messages_sent;

17 ‘Wait for send interval duration;

18 Calculate success rate as (n”fllar’;lf;iszfjg::‘f::SSf“l) x 100;

total_data_sent .,
19 Calculate throughput as _Pe=CE=22t—

20 Print Number of Messages Attempted,;

21 Print Number of Successful Messages;
2 Print Success Rate;

23 Print Throughput;

24 Disconnect from the client;

number of successful messages, and the total amount of data
transmitted. Once connected, the recipient of the messages is
determined using the specified username. The algorithm
then enters a loop, continuously sending a predefined message
to the recipient until the set test duration elapses. For each
attempt, successful transmissions increment a success countet,

while the total attempts, regardless of outcome, increment an
overall counter.

Algorithm 11 is designed to gauge the performance of the
ROSIC via the Telegram messaging platform under varying
workloads. For each batch size in a predefined list, the algo-
rithm captures the start time and initialises a list to record

85UBD 17 SUOWWIOD BAIFER1D) 3|qedldde au Ag pausenob afe S VO ‘3N 40 S3|NJ 104 Ar1g1IT 8UIIUO AB]IM UO (SUOTIPUOD-PUR-SWLBH LD 3| 1M AReIq 1 BU1|UO//SANY) SUORIPUOD PUe SWie | 8L} 88S *[7202/€0/0€] Uo Areiqiauiiuo A8IM ‘89 L Ad ZTTZT 2AS0/610T 0T/I0p/W00 A8 | IM A RIq 1 [PUUO"YDeesa.18 1//:SONY W04 PAPRO|UMOQ ‘2 ‘¥202 ‘STEITEIE

14 of 17 |

SADEGHIAN ET AL.

Algorithm 11 Scalability assessment of ROSIC via the Telegram API messaging

Data: API credentials, recipient username, message content, list of message batch sizes
Result: Throughput and average latency for each batch size

1 begin

2 Initialize Telegram client with API credentials;

3 Connect to the client;

4 Set recipient using recipient username;

5 for each batch size in list of message batch sizes do

6 Set start time to current time;

7 Initialize empty list for latencies;

8 for i from 1 to batch size do

9 Set send start time to current time;

10 Send message to recipient with content message content;
11 Set send end time to current time;

12 Calculate latency as send end time minus send start time;
13 Add latency to list of latencies;

14 Set end time to current time;

15 Calculate total time as end time minus start time;

16 Calculate throughput as batch size divided by total time;

17 Calculate average latency as the average of list of latencies;
18 Print throughput and average latency for batch size;

19 Disconnect from the client;

individual message latencies. As messages are dispatched, the
time taken for each send operation is computed and stored.
Upon completing the batch, the end time is noted and the total
time for the batch is determined. Using these data, two critical
performance metrics are calculated: throughput and average
latency. The throughput represents the number of messages
sent per unit time and is detived by dividing the batch size by
the total time (similar to Algorithm 10). Meanwhile, the
average latency, which is indicative of the mean-time taken for
individual message deliveries, is computed from the recorded
latencies. These metrics offer insights into the system's effi-
ciency and responsiveness under the varying tested loads. The
procedure is reiterated for each batch size, furnishing a
comprehensive view of scalability as the messaging load esca-
lates. The session concludes by disconnecting from the Tele-
gram client, ensuring the session's integrity. Within the main
loop, Algorithm 11 attempts to send a predefined message to
the designated recipient until the test duration elapses. For each
successful message transmission, the number of counters for
successful messages and the total amount of data sent are
incremented. If an error occurs during transmission, an
exception message is printed, providing insight into potential
transmission issues. After the loop concludes, the algorithm
calculates the success rate by comparing the number of suc-
cessful messages to the total attempted. Additionally, it com-
putes the throughput by dividing the total data sent by the
actual test duration, yielding a measure in bytes per second.
This dual metric, success rate and throughput offers a
comprehensive assessment of the ROSIC messaging system's
performance under the tested conditions via Telegram.

Moreover, the algorithm was executed with a test duration that
resulted in 51 message send attempts. Remarkably, all of these
attempts were successful, leading to a perfect success rate of
100%. This indicates that during the test period, the Telegram
platform was highly reliable, with no message transmission
failures or losses. The throughput, measured at 195.12 byte/s,
provides insight into the data transfer rate. Given that the
content of each message was a predefined text for throughput
assessment, this rate likely reflects the combined size of the
message content, metadata and any overhead introduced by the
Telegram protocols.

The scalability assessment of ROSIC via the Telegram
messaging platform yielded intriguing results. For smaller
batches of 10 messages, the system exhibited a high
throughput of 15.82 message/s with a minimal average latency
of just 0.0632 s per message. This suggests that for low-volume
messaging, the system is highly efficient and responsive.
However, as the message batch size increased, a decline in
throughput was observed. For a batch of 50 messages, the
throughput dropped to 5.04 message/s, with the latency almost
tripling to 0.1985 s. A further increase in batch size to 100
messages saw the throughput decrease to 3.04 message/s,
accompanied by a latency of 0.3290 s. Interestingly, when the
batch size was amplified to 500 messages, the throughput
temained relatively stable at 3.18 message/s, and the latency
slightly decreased to 0.3143 s. This suggests that beyond a
certain threshold, the system's performance stabilises, indi-
cating a potential saturation point in its scalability. Such in-
sights are invaluable for optimising and predicting the system's
behaviour under varying loads.

85UBD 17 SUOWWIOD BAIFER1D) 3|qedldde au Ag pausenob afe S VO ‘3N 40 S3|NJ 104 Ar1g1IT 8UIIUO AB]IM UO (SUOTIPUOD-PUR-SWLBH LD 3| 1M AReIq 1 BU1|UO//SANY) SUORIPUOD PUe SWie | 8L} 88S *[7202/€0/0€] Uo Areiqiauiiuo A8IM ‘89 L Ad ZTTZT 2AS0/610T 0T/I0p/W00 A8 | IM A RIq 1 [PUUO"YDeesa.18 1//:SONY W04 PAPRO|UMOQ ‘2 ‘¥202 ‘STEITEIE

SADEGHIAN ET AL.

| 15 of 17

In Figure 5, part (a) presents the ROSIC middleware user
interface, illustrating the data transmission speed (#;), encom-
passing both sending and receiving functionalities, along with
the connection status. Furthermore (2,) and (a3) within part A
distinctly display the specific commands dispatched to the
robot and the confirmation of their successful reception by the
robot, denoted as ’Sent command to the robot’ and ‘Received
commands by the robot’, respectively. The following sections
of Figure 5 visually represent robots being controlled via
ROSIC, utilising ROS 2 through the Internet and integrated
with the Telegram API. In particular, (b) shows an omni-
directional mobile manipulator in action, (c) showcases the
KUKA LBR iiwa 7 in operation, (d) demonstrates the dual-arm
YuMi ® collaborative robot in a hand-over task and (e) presents

ROSIC network details:

Sent commands to the robot:

the Crazyflie 2.1, an open-source flying development platform,
engaged in a synchronised swarm flight.

Telegram's end-to-end encryption, especially evident in its
Secret Chats feature, ensures that messages are encrypted on the
sender's device and decrypted only on the receiver's end, safe-
guarding data duting transit. The platform's transparency, owing
to its open-source nature, allows for rigorous code reviews by
independent security experts, leading to the identification and
rectification of potential vulnerabilities. Furthermore, Tele-
gram's self-destructing messages in Secret Chats and its policy of
not storing these chats on servers can be instrumental for
ROSIC, minimising data retention risks. The added layer of
security through two-step verification and the ability to
customise security settings further fortifies user data against

= @

Received commands by the robot: Mobile Manipulator -1

Function 1 - Sent
Function 2 - Sent
Function 3 — Sent
Function 4 — Sent
Function 5 - Sent

Upload speed: 26.87 Mbps
Download speed: 26.66 Mbps

puthorize,

&

Function 1 — Received
Function 2 - Received
Function 3 - Received
Function 4 — Received
Function 5 - Received

%

Connected to Internet

. ROSIC

)
%,
(2 S
0, @

s
2
é
°
Q

3

T

Function 6 — Sent

Function 6 - Received

wireless charging
station

FIGURE 5 Utilising ROSIC for remote control of various robotic systems over the Internet, operators can activate various predefined movement functions
that are designed based on ROS 2 (a) User interface of the ROSIC middleware (b) An omni-directional mobile manipulator demonstrating varied manoeuvres

(c) The KUKA LBR iiwa 7 executing a grasping action (d) The dual-arm YuMi ® collaborative robot from ABB performing an object hand-over; and (e) A trio

of Crazyflie 2.1 drones exhibiting synchronized swarm flight.

85U8017 SUOWILIOD BAIEa.D 3|t (dde au Aq peusenob a8 S9piLe YO ‘SN JO S3|nJ o Akeiq17 38U UO AB|1MW UO (SUOIPUOD-PpUR-SLUBY 0D A8 | Im° Afe1q 1 jeutjuo//SdnL) SUONIPUOD Pue swie 1 8y} 88S *[120z/c0/0e] uo Areiqiauliuo A|IM ‘B9 L Aq ZTTZT 2/S0/6v0T 0T/I0p/Wo A8 1M Aleiq 1 Bul U0 YD Jessa.1//:SAny Wo.y papeoumoqd ‘Z ‘v20Z ‘STEITEIZ

16 of 17 |

SADEGHIAN ET AL.

unauthorised access. Additionally, Telegram's robust API and
bot support can be harnessed by ROSIC for automation and
enhanced user interactions without compromising security. The
platform's vast user base and active development ensure that any
emerging security threats are swiftly addressed. Its cloud-based
architecture offers users the flexibility of accessing data from any
device securely, and the secure file-shating capabilities can be
pivotal if ROSIC requires file exchanges. In essence, integrating
ROSIC with Telegram not only provides a suite of advanced
security features but also ensures a user-centred experience,
provided that the implementation is done judiciously and that
users are educated on best practices.

5 | CONCLUSION

The development and proposal of the ROSIC emerged from
the pressing need to address the complexities and challenges
inherent in remote robot control. ROSIC is architectured to
provide a comprehensive telecommunication system tailored
for robots, emphasising versatility, efficiency, scalability and
user-centred design. Key features of ROSIC include its
modular architecture, which comprises the authoriser, orga-
niser, container and linker, ensuring seamless and adaptive
integration with diverse robotic scenarios. To advance web-
based robot control methods, ROSIC implements innovative
integration with instant messaging applications, substantially
improving accessibility for a wide range of users and aug-
menting real-time control functionalities. This bypasses the
complexities typically associated with cloud based approaches
often used for the same purpose. Our experimental evaluations
of ROSIC's performance, when integrated with Telegram
application, were conducted on an NVIDIA® Jetson Orin
Nano™ platform within a network environment of 26 Mbps
upload and download speeds. These tests assessed key per-
formance parameters such as latency, throughput, scalability
and resource utilisation. The experimental results confirmed
the effectiveness of our approach where for small batches of
10 messages the system shows high efficiency with 15.82
message/s and 0.0632-s latency. However, with larger batches,
such as 50 and 100 messages, throughput drops to 5.04 and
3.04 message/s, respectively, with increased latency. Interest-
ingly, at 500 messages, throughput stabilises at around 3.18
message/s, suggesting a scalability threshold. While ROSIC has
shown promising potential, future enhancements could include
elevating its security by integrating distributed ledger technol-
ogy. This would further strengthen data privacy and system
integrity, making it a more robust and reliable platform.

CONFLICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data
were created or analyzed in this study.

ORCID
Rasoul Sadeghian © https://orcid.org/0000-0001-6336-4002
Sina Sareh https://Orcid.org/0000—0002—9787—1798

REFERENCES

1. Ray, PP: Internet of robotic things: concept, technologies, and chal-
lenges. IEEE Access 4, 9489-9500 (2016). https://doi.org/10.1109/
access.2017.2647747

2. Mohsan, S.A.H.,, et al.: Unmanned aerial vehicles (UAVs): practical as-
pects, applications, open challenges, security issues, and future trends.
Intelligent Service Robotics, 109-137 (2023). https://doi.org/10.1007/
$11370-022-00452-4

3. Naseer, F, Khan, M.N,, Altalbe, A.: Telepresence robot with DRL
assisted delay compensation in IoT-enabled sustainable healthcare
environment. Sustainability 15(4), 3585 (2023). https://doi.org/10.3390/
sul5043585

4. Naseer, F, et al.: A novel approach to compensate delay in communi-
cation by predicting teleoperator behavior using deep learning and
reinforcement learning to control telepresence robot. Electron. Lett.
59(9), €12806 (2023). https://doi.org/10.1049/¢ll2.12806

5. Altalbe, A, et al.: Orientation control design of a telepresence robot: an
experimental verification in healthcare system. Appl. Sci. 13(11), 6827
(2023). https://doi.org/10.3390/app13116827

6. Zhu, Q. et al: Cybersecurity in robotics: challenges, quantitative
modeling, and practice. Foundations and Trends in Robotics 9(1), 1-129
(2021). https://doi.org/10.1561/2300000061

7. Clark, G.W,, Doran, M.V,, Andel, T.R.: Cybersecurity issues in robotics.
In: 2017 IEEE Conference on Cognitive and Computational Aspects of
Situation Management (CogSIMA), pp. 1-5 (2017)

8. Orsag, M., Korpela, C., Oh, P: Modeling and control of MM-UAV:
mobile manipulating unmanned aetial vehicle. J. Intell. Rob. Syst. 69(1-4),
227-240 (2013). https://doi.org/10.1007/s10846-012-9723-4

9. Kennel-Maushart, E, Poranne, R., Coros, S.: Interacting with multi-robot
systems via mixed reality. IEEE International Conference on Robotics
and Automation (ICRA), 1163311639 (2023)

10. An, X, et al: Multi-robot systems and cooperative object Transport:
communications, platforms, and challenges. IEEE Open Journal of the
Computer Society 4, 23-36 (2023). https://doi.org/10.1109/0jcs.2023.
3238324

11. Taylor, A.L., Wright, J.T.: A telerobot on the world wide web. In: Na-
tional Conference of the Australian Robot Association (1995)

12. Schulz, D,, et al.: Web interfaces for mobile robots in public places. IEEE
Robot. Autom. Mag. 7(1), 48-56 (2000). https://doi.org/10.1109/100.
833575

13. Gerkey, B,, Vaughan, R.T., Howard, A.: The player/stage project: tools
for multi-robot and distributed sensor systems. Proceedings of the 11th
international conference on advanced robotics. 1, 317-323 (2003)

14. Chen, Y., Du, Z., Gatcia-Acosta, M.: Robot as a service in cloud
computing. Fifth IEEE International Symposium on Service Oriented
System Engineering, 151-158 (2010)

15. Osentoski, S., et al.: Robots as web services: reproducible experimenta-
tion and application development using rosjs. IEEE International Con-
ference on Robotics and Automation, 6078-6083 (2011)

16. Alexander, B., et al: Robot web tools [ROS topics]. IEEE Robot.
Autom. Mag. 19(4), 20-3 (2012). https://doi.org/10.1109/mra.2012.
2221235

17. Anis, K.: ROS as a service: web services for robot operating system.
Journal of Software Engineering for Robotic 6(1), 1-14 (2015)

18. Dalla Libera, F, Ishiguro, H.: ROSlink: interfacing legacy systems with
ROS. IEEE International Conference on Robotics and Automation,
475-481 (2013)

19. Koubaa, A., Alajlan, M., Qureshi, B.: Roslink: Bridging Ros with the
Internet-of-Things for Cloud Robotics, pp. 265-283. Robot Operating
System (ROS) (2017)

20. Portugal, D, et al.: On the Security of Robotic Applications Using ROS,
pp. 273-289. Artificial Intelligence Safety and Security (2018)

85U8017 SUOWILIOD BAIEa.D 3|t (dde au Aq peusenob a8 S9piLe YO ‘SN JO S3|nJ o Akeiq17 38U UO AB|1MW UO (SUOIPUOD-PpUR-SLUBY 0D A8 | Im° Afe1q 1 jeutjuo//SdnL) SUONIPUOD Pue swie 1 8y} 88S *[120z/c0/0e] uo Areiqiauliuo A|IM ‘B9 L Aq ZTTZT 2/S0/6v0T 0T/I0p/Wo A8 1M Aleiq 1 Bul U0 YD Jessa.1//:SAny Wo.y papeoumoqd ‘Z ‘v20Z ‘STEITEIZ

https://orcid.org/0000-0001-6336-4002
https://orcid.org/0000-0001-6336-4002
https://orcid.org/0000-0002-9787-1798
https://orcid.org/0000-0002-9787-1798
https://doi.org/10.1109/access.2017.2647747
https://doi.org/10.1109/access.2017.2647747
https://doi.org/10.1007/s11370-022-00452-4
https://doi.org/10.1007/s11370-022-00452-4
https://doi.org/10.3390/su15043585
https://doi.org/10.3390/su15043585
https://doi.org/10.1049/ell2.12806
https://doi.org/10.3390/app13116827
https://doi.org/10.1561/2300000061
https://doi.org/10.1007/s10846-012-9723-4
https://doi.org/10.1109/ojcs.2023.3238324
https://doi.org/10.1109/ojcs.2023.3238324
https://doi.org/10.1109/100.833575
https://doi.org/10.1109/100.833575
https://doi.org/10.1109/mra.2012.2221235
https://doi.org/10.1109/mra.2012.2221235
https://orcid.org/0000-0001-6336-4002
https://orcid.org/0000-0002-9787-1798

SADEGHIAN ET AL.

17 of 17

21.

22,

23.

24.

25.

26.

Profanter, S., et al.: OPC UA versus ROS, DDS, and MQTT: perfor-
mance evaluation of industry 4.0 protocols. IEEE International Con-
ference on Industrial Technology (ICIT), 955-962 (2019)

Koubaa, A.: Service-oriented Software Architecture for Cloud Robotics
(2019). arXiv preprint arXiv:1901.08173

Kavas-Tortis, O., et al.: V2X communication between connected and
automated vehicles (CAVs) and unmanned aerial vehicles (UAVs). Sen-
sors 22(22), 8941 (2022). https://doi.org/10.3390/s22228941

Chen, K, et al.: FogROS2-SGC: A ROS2 Cloud Robotics Platform for
Secure Global Connectivity. arXiv preprint arXiv:2306.17157 (2023)
Stellios, I., et al.: A survey of iot-enabled cyberattacks: assessing attack
paths to critical infrastructures and services. IEEE Communications
Surveys & Tutorials 20(4), 3453-3495 (2018). https://doi.org/10.1109/
comst.2018.2855563

Sareh, S., et al.: Interoperable Robotics Proving Grounds: Investing in
Future-Ready Testing Infrastructures (2023)

27.

28.

Sadeghian, R., Sareh, S.: Multifunctional arm for telerobotic wind turbine
blade repair. In: 2021 IEEE International Conference on Robotics and
Automation (ICRA), pp. 6883-6889 (2021)

Sadeghian, R., Sarch, S. Robotic repair system. U.S. Patent Application
18/032,139, Royal College of Art (2024)

How to cite this article: Sadeghian, R., Shahin, S,,
Sareh, S.: ROSIC: Enhancing Secure and Accessible
Robot Control through Open-Source Instant Messaging
Platforms. IET Cyber-Syst. Robot. 12112 (2024).
https://doi.org/10.1049/csy2.12112

85UBD 17 SUOWWIOD BAIFER1D) 3|qedldde au Ag pausenob afe S VO ‘3N 40 S3|NJ 104 Ar1g1IT 8UIIUO AB]IM UO (SUOTIPUOD-PUR-SWLBH LD 3| 1M AReIq 1 BU1|UO//SANY) SUORIPUOD PUe SWie | 8L} 88S *[7202/€0/0€] Uo Areiqiauiiuo A8IM ‘89 L Ad ZTTZT 2AS0/610T 0T/I0p/W00 A8 | IM A RIq 1 [PUUO"YDeesa.18 1//:SONY W04 PAPRO|UMOQ ‘2 ‘¥202 ‘STEITEIE

https://doi.org/10.3390/s22228941
https://doi.org/10.1109/comst.2018.2855563
https://doi.org/10.1109/comst.2018.2855563
https://doi.org/10.1049/csy2.12112

	ROSIC: Enhancing secure and accessible robot control through open‐source instant messaging platforms
	1 | INTRODUCTION
	2 | ROSIC CONCEPT
	2.1 | System architecture
	2.2 | Scenarios for robot control

	3 | INTEGRATION WITH TELEGRAM
	4 | PERFORMANCE AND EFFICIENCY ANALYSIS
	5 | CONCLUSION
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

