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Analysing 88 sources published from 2011 to 2021, this paper presents a irst systematic review of the computer vision-based
analysis of buildings and the built environment. Its aim is to assess the potential of this research for architectural studies
and the implications of a shift to a crossdisciplinarity approach between architecture and computer science for research
problems, aims, processes, and applications. To this end, the types of algorithms and data sources used in the reviewed
studies are discussed in respect to architectural applications such as a building classiication, detail classiication, qualitative
environmental analysis, building condition survey, and building value estimation. Based on this, current research gaps and
trends are identiied, with two main research aims emerging. First, studies that use or optimise computer vision methods
to automate time-consuming, labour-intensive, or complex tasks when analysing architectural image data. Second, work
that explores the methodological beneits of machine learning approaches to overcome limitations of conventional analysis
in order to investigate new questions about the built environment by inding patterns and relationships between visual,
statistical, and qualitative data. The growing body of research ofers new methods to architectural and design studies, with
the paper identifying future challenges and directions of research.
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1 INTRODUCTION: COMPUTER VISION IN BUILT ENVIRONMENT STUDIES

A growing number of disciplines, including architecture, are adopting data-driven applications to process large
digital datasets in support of analytical and decision-making processes [21]. This paper reviews the use of images
of the built environment in computer vision studies and how in turn computer vision methods ind increasing
use in built environment studies. This shift has important implications for research problems, aims, processes,
and applications as well as terminology that require clariication for design-led research at the intersection of
computer science and architecture. This review assesses the methods, techniques, and data used in recent research
in order to group methods and applications and identify new research directions and knowledge gaps of interest
to interdisciplinary researchers.
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The use of analog and digital data in architectural practice and theory is well established in studies of design
processes [22], buildings, and urban fabrics. Common topics include manufacturing [8], design sustainability [81],
environmental impact [47], and morphology [33]. Greater availability of digital data repositories such as Energy
Performance Certiicates (EPCs) or property- and planning-related records however creates new applications and
potential to analyse the built environment. In particular, large-scale image data processing and acquisition are an
emerging area of research in the built environment and studies of its design.
Computer vision methods (including image-based machine learning) applied to buildings as well as larger

architectural and urban domains can be grouped into four clusters of research: (i) landmark and place recognition,
(ii) generative design and modelling, (iii) remote sensing, and (iv) the analysis of urban environments. Landmark
recognition approaches have been reviewed by T. Chen et al. [14] and Bhattacharya and Gavrilova [9], while Garg
et al. [31] compared visual place recognition methods. New applications of artiicial design and urban environment
modelling were assessed by Sönmez [89] and Feng et al. [28]. A review of deep learning applications in remote
sensing by Ma et al. [68] proposed a taxonomy based on four main tasks: image preprocessing, classiication,
change detection, and accuracy assessment. Lastly, four reviews investigated the use of street-view imagery for
the analysis of urban environments [10, 17, 38, 51].

Although many of these recent reviews touch on diferent aspects of building recognition, there is no speciic
assessment of how computer vision-based applications might beneit architectural studies or takes into account
architectural practices. This paper is a irst systematic review of the state-of-the-art of computer vision in the
analysis of the built environment, especially in relation to applications at diferent architectural and urban
scales. It compares the research foci, computer vision and machine learning approaches, and data acquisition
and curation processes found in recent studies to identify trends and challenges of this often transdisciplinary
research as well as future directions and value this might bring to architectural and urban design studies. This is
also of relevance to computer scientists, as the shift in focus changes the data pipeline and research approaches.
A detailed review of 88 sources identiied two primary objectives in recent research: 64% of studies test or

improve the performance of existing and novel algorithms by applying them to architectural datasets (Fig. 1a) and
36% assess the methodological beneits and outcomes of using computer vision techniques to ask new questions
in the architectural domain (Fig. 1b). For example, the automation of architectural recognition and classiication
tasks can expedite otherwise labour- and time-intensive processes such as the recognition of building elements,
assigning street views to speciic cities or inferring neighbourhood statistics. Current research demonstrates the
value of computer vision-based methods of analysis in the architectural domain, such as a correlation of visual
and statistical or demographic data.

This paper explores how new questions about urban gentriication, real-estate values or speciic characteristics
of the built environment can be asked using computer vision methods, and how this might inform decision-making
by designers, occupants, and policymakers. The aim is further to contribute to a much-needed transdisciplinary
evaluation of common interests between computer vision and architectural or urban design studies to strengthen
the reliability and methodological rigour of research. Disciplinary diferences in understanding and assessing
computer vision or spatial design problems can lead to misunderstandings that need be resolved to fully realise
the potential of computer vision approaches in architecture.

This review makes the following contributions:

• It provides an application-centred classiication of current research at the intersection of computer vision
and architecture.

• It analyses the trends and gaps emerging from the research.
• It assesses the current state of data sources, both in terms of acquisition methods and geographic locations.
• It evaluates the reproducibility and comparability of computer vision-driven architectural research and
summarises common problems and possible solutions.
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(a) (b)

Fig. 1. Publications focused on: (a) innovating machine learning tool by applying them to architectural datasets by year,
(b) formulating novel questions by employing machine learning techniques in the architectural domain by year.

• It outlines opportunities for further interdisciplinary architecture and computer science research.

This review is organised into four sections. A methods section provides details on the criteria formation for the
inclusion of reviewed papers and sources. This is followed by a summary of the search results and main indings.
A discussion section then highlights the main research trends, challenges, and pitfalls. Finally, the concluding
section makes recommendations on key future research directions.

2 METHODS

This paper uses the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method [79,
80] and a multi-stage selection process. Primary and peer-reviewed sources were selected using a keyword search
of the IEEE Xplore, JSTOR, Scopus, Semantic Scholar, and Google Scholar databases, as well as via Google Search,
to identify studies using computer vision in the context of the built environment. Given a noticeable increase in
studies over the last ive years, this review is limited to research published from 2011 to 2021 to capture the most
recent trends.
The scope of this paper is also limited to studies in architecture and urban design and excludes work from

associated ields such as engineering, building technology, and interior and landscape design. In particular,
related research on building interiors and 3D reconstruction was excluded, as this review focuses on research and
methods with direct implications for architectural practice and design at the building scale. While acknowledging
that computer vision methods are also applied to studies of interior building environments, especially in the
context of plan layout generation and style recognition, this review focuses on outdoor features as interior
environments lack public data sources and tend to see frequent and signiicant change, making them diicult to
compare or analyse at scale. Likewise, this review does not include the 3D reconstruction of urban environment,
as from an architectural practice perspective this is of secondary interest. This type of research tends to focus on
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speculative design rather than actual architectural and urban conditions, although some applications in urban
planning are perceivable.

The overlap of terms widely used in both computer science and architecture became an unexpected challenge.
The meaning of keywords such as “architecturež, “structurež, “modelž, “designž or “buildingž depends on disci-
plinary contexts and can refer to signiicantly diferent concepts. For example, the initial search for the keywords
“machine learningž together with “architecturež brought up publications that used the term “architecturež to
describe the structure of machine learning systems. Using less ambiguous words such as “façadež, “urbanž, “cityž
or “ornamentž produced better results in identifying literature relevant to built environment studies. However,
it created a risk of excluding papers applying computer vision methods to other aspects of architecture. This
problem was mitigated using a multi-stage selection process (Fig. 2). Following the keyword search, paper titles,
and abstracts were screened with respect to both computer vision and architectural or urban analysis. References
in the most relevant papers were also checked. In addition, conference papers (if not published in a journal),
online sources (e.g. research project websites), and PhD theses were reviewed and added. This created 226 relevant
records. From these, duplicates, papers not peer reviewed or cited in peer-reviewed journals, and conference
papers later republished in journals (31 records) as well as papers referring to the “architecturež or “structurež of
computational systems rather than buildings (69 records) were removed. 3 reports could not be retrieved. This
left 123 sources that fully met the initial search criteria.
A large body of work looked at the application of machine learning in scene recognition for the purpose of

navigation and obstacle detection in self-driving vehicles. Although some relate to building analysis, due to similar
methodology with papers included in this review, these were omitted from the analysis. Furthermore, studies that
explored generative rather than analytical systems were excluded, as were those that only used non-visual data
or 3D datasets such as point clouds. Both were considered outside the scope of the paper. Removing 35 records,
inally left 88 sources for further analysis in this review.

Two types of information in the publications were compared: (i) the algorithms and methods used in relation
to machine learning models and computer vision tasks and (ii) architectural application (such as urban scene
understanding or heritage/style analysis) in relation to diferent scales (from building detail to satellite) and data
sources.

3 FINDINGS

3.1 Search results

The compared 88 sources included 29 conference papers, 54 journal papers, 5 online reports, and 1 PhD thesis.
Most papers were published in computer science journals (38 articles), followed by journals on remote sensing
(13 articles) and architectural and urban studies (8 articles). Table 1 details the thematic distribution of journal
disciplines per publication.

3.2 Computer vision in architectural analysis

Visual inspections and analysis are standard practice in building condition surveys and evaluations, with pho-
tographs providing a physical record and visual evidence. For example, a visual analysis of façades to determine
architectural styles or existing service provisions can be used to establish a building’s age and dwelling type,
which might infer typical internal layouts and building maintenance problems. At the same time, building
elements such as window or casement types are indicators of thermal performance and are used to establish a
building’s EPC rating. The size and location of windows can also provide quantitative information about spatial
and environmental qualities including sunlight penetration. Computer vision algorithms can speed and scale
up the processing of visual information in cases such as building condition surveys. Generalising, visual data
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Fig. 2. PRISMA flow diagram of source selection for review.
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Table 1. Publication categories of the works analysed in this review.

Publication category Number of publications

Computer science and technology 43
Remote sensing 14
Architecture and urban studies 8
Geography/geoinformation 4
Computer science and design 4
Computer graphics 3
Technology 2
Computer science and architecture 1
Economics 1
VR 1
Environmental Research 1
Natural Sciences 1
PhD Thesis 1
Online sources 4

is currently used in ive areas of architectural analysis: building classiication, detail classiication, qualitative
environmental analysis, building condition survey, and building value estimation.

3.2.1 Image classification of building style and typology. Classifying architectural styles and typologies is common
in historical and precedent studies in architecture, with the visual analysis of building features part of a process to
identify non-visual attributes. Stylistic features might indicate a property’s age, region, or construction type. For
example, Victorian buildings in England have a distinctive façade design and internal layout. In addition, building
uses can be partially indicated by their façade, with computer vision methods utilised to classify architectural
styles [62, 71, 108] and typologies [2, 15, 50]. A classiication of the whole image is typical for a high-level analysis
of architectural features such as overall urban characteristics [41] or style and use classiication [60]. Chu and
Tsai [16] exploit a graph-mining algorithm to analyse images for repetitive visual patterns that difer between
architectural styles. Obeso et al. [76] use a CNN to classify Mexican architectural styles, with visual saliency
introduced in the algorithm’s network pooling layers to ilter relevant features for deeper network layers. Llamas
et al. [65] compare the performance of diferent types of CNNs such as AlexNet or GoogLeNet when trained on
pre-labelled images of heritage buildings, and Guo and Li [37] explore improvements to LeNet-5 when applied to
architectural style classiication tasks.
In another example, the website Classify House A.I. asks users to upload an external image of a house

to determine which of the 31 predeined architectural styles can be recognised using computer vision-based
analysis [18]. Davies [20] trains an Inception V3 network to recognise Georgian architecture from GSV images
of London. Likewise, Alhasoun and González [2] train a CNN to match GSV images to their corresponding US
towns by classifying street frontage based on their urban contexts[56]. Deep-learning models are also used by
Yoshimura et al. [104] to measure visual similarities between the styles of diferent architects.

To enhance the architectural beneits of building image classiications, more than one characteristic needs to
be considered at the same time, as many exceptions to “ground truthž data can be found across all architectural
styles and typologies. For example, dwelling houses might have been converted or changed their use while
façades remained the same. Although stylistic and typological features can indicate use and occupancy, they are
only one factor, with a more nuanced multi-factor reading needed for reliable estimates.
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3.2.2 Building detail detection and classification. Building details, similar to style and typology, can have visual
features speciic to where a building is located, the local climate, and the period it was built in. For example,
high-pitched roofs are historically found in regions afected by heavy snowfall. The detection and classiication
of building elements involves prior feature extraction and, like style classiications might use indicators such
as window designs [87] or face-recognition algorithms (applied to sculpted heads of humans and gargoyles) as
a determining feature [86]. A set of stylistic elements extracted from street-view images is used to determine
features typical for Paris (or those untypical) in Doersch et al. [25]. In other examples, a bounding-box based
object-detection approach separates building details by either extracting whole building façades from an image
and then assigning to them a particular style based on their features [100] or by extracting façade details to
analyse speciic building elements [20, 34, 65, 70, 97, 107]. In other cases, semantic segmentation is applied to
detect roof typologies and hedgerows maintenance levels from satellite images [78], to map green and solar
roofs [98] or in detail-oriented style analysis where authors train a classiier to distinguish Flemish, Renaissance,
Haussmannian, and Neoclassical styles [70].

Of the reviewed papers, almost a third (30 records) discuss semantic segmentation, which is key to extracting
elements – either whole façades from their urban context [29, 35, 63, 69] or façade elements such as doors and
windows [4, 23, 30, 52, 63, 66, 69, 105, 109]. In research with a focus on semantic segmentation, the extraction of
buildings and their elements remains a problem of machine learning techniques and only becomes an architectural
question if it is forming part of a larger research process. This includes research on architectural challenges at a
scale and complexity diicult to complete using manual methods, such as extracting roof or façade textures to
increase the quality of texture patterns in 3D virtual urban models [23], reconstructing urban 3D models [36, 43],
or automating building change detection [93].

3.2.3 ualitative analysis. The exploitation of computer vision in qualitative analysis is still in its infancy, but
has noticeably increased in recent years. Most applications assess the quality of streetscapes or establish new
links between the aesthetics of an urban environment and statistical data – on education, unemployment, housing,
living environment, health, or crime [3, 32, 91]. For example, Streetscore [74] applies Support Vector Regression
to predict whether a given streetscape is perceived as safe or unsafe by viewers, and both Dubey et al. [26] and
Min et al. [72] study perceptual attributes such as “safež, “livelyž, “boringž, “wealthyž, “depressingž, and “beautifulž
based on GSV images of several US cities. Another study investigates how visual qualities afect how a street
is perceived as walkable [103], while Quercia et al. [83] compare the aesthetic qualities of diferent areas of
London. Furthermore, a crowd-labelled dataset of street-view images from Boston and New York is used to create
perceptual maps for 21 US cities [58] and the online platform Scenic-Or-Not explores the rating of 200,000 images
in relation to perceived qualities of outdoor space, usinga CNN to analyse and extract key features common
to positive scores [85]. Ilic et al [46] used a siamese CNN to assess levels of gentriication in Ottawa based
on the analysis of properties captured in the GSV images. Similarly, visual preferences are examined through
semantic segmentation to understand how individual components such as building façades or greenery relate
to perceptions of street space quality [101]. Šćepanović et al. [84] parsed satellite imagery of six Italian cities
to predict urban vitality criteria based on the theories of Jane Jacobs. Neighbourhood vitality is also studied
by Wang and Vermeulen [96]. Lastly, two recent studies use semantic segmentation and k-means clustering in
their urban colour analysis [24, 109]. In the analysed cases, qualitative analysis often requires combining several
datasets or applying a multi-stage methodology, or both. This approach to analysis is valuable for making design
decisions around a building’s form and mass, aesthetics, programme, townscape relationship or user experience,
as qualitative assessments are already frequently used in architectural practice.

3.2.4 Building condition and value estimation. In the assessment of building conditions and property values image
data is an establishedmeans for qualitative evaluation of building conditions and a quantitative analysis of building
features. Several papers study property price estimation based on a visual assessment. Law et al. [55] use a CNN to
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automatically extract visual features from GSV images in order to estimate house prices in London, UK. Lindenthal
and Johnson [62] combine a traditional hedonic model with architectural style classiications to estimate sales
price premia in relation to architectural styles at the building and neighbourhood level, demonstrating that
machine learning classiiers are as reliable as human experts in mass appraisals. Wang et al. [95] explore how an
aesthetic value might be used to indicate property prices. Similarly, Poursaeed et al. [82] estimate house prices
based on visual and textural features, with the dataset including interior and exterior images of buildings that are
classiied according to levels of perceived luxury. In addition, Muhr et al. [73] use satellite images to automate
the assessment of location quality. Computer vision algorithms are further deployed to optimise manual tasks of
labelling real estate data. Long short-term memory (LSTM) classiication algorithms and fully-connected neural
networks (FCNNs) are used in real-estate scene classiication to automate the labelling of exterior and interior
features that range from room types [12] to countertops [6]. As some of the image data is of insuicient quality,
image enhancement processes are also a common feature of this type of research. The use of images in the
assessment of building conditions tends to focus on image patch analysis. Examples of this include determining
the condition of single-family house based on building elements such as windows or roofs [54]. Zeppelzauer et
al. [106] automate a building age estimations using a two-stage approach, irst training a CNN to learn the age
characteristics at patch level and, second, globally aggregating patch-wise age estimates of an entire building.
Another study by Hoang [40] applies SVM to the image analysis of building walls, using cracks in buildings
as indicators of fabric deterioration. Visual analysis is a conventional method in building condition and value
estimation, with the above studies automating already established processes. The visual building condition
survey is used to estimate property values, forecast maintenance costs, or assess a building’s state of repair,
including dangerous structural deterioration. Consequently, photographs are often used as evidence, for example,
in building surveys or tenancy-related inventories.

3.3 Trends and gaps of computer vision in architectural analysis

In the following, the relationship between architectural applications and scales and computer vision tasks and
machine learning methods are quantitatively analysed through relative co-occurrence matrices (Fig. 3 and 4). The
matrices difer from typical contingency tables as categories are not mutually exclusive. Therefore, a single article
may be counted several times and statistical methods such as the chi-squared test cannot be applied to quantify
correlations precisely. While a co-occurrence does not necessarily mean that a speciic method was used to solve a
given problem - only that a method and problem were present at the same time - high contrasts in co-occurrences
values suggest a stronger correlation between a particular architectural analysis and computational approach.

Fig. 3 shows the relative occurrences of computational approaches for a given architectural application or
scale. Although some applications such as urban scene understanding, demographics, and façade extraction
explore a relatively diverse range of computer vision approaches, others including heritage/style and aesthetic
analysis have only use speciic methods (image classiication for the former, classiication and regression for
the latter). This indicates opportunities to study how other algorithms and methods might perform on these
applications, for example, what if style analysis was cast as a regression problem along various perceptual
dimensions (classic/modern, rural/urban, etc.) rather than a classiication problem? Or, could studies of aesthetics
beneit from object detection? While CNNs dominate most architectural applications and scales, consistent
with their widespread popularity in other ields, perhaps the more interesting case is when they do not, the
classiication of building elements (at the building scale), where SVMs are more frequent. One explanation is that
such an application typically involves often rectiied images of façades with a relatively consistent structure,
making the image invariances learned by deep CNNs in exchange for larger amounts of data less useful.

The relative occurrence analysis of architectural applications and scales and computational approaches (Fig. 4)
reveals interesting patterns. While computer vision tasks such as image classiication, object detection, and
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Fig. 3. Relative co-occurrences (column-wise). Each value represents the probability of occurrence of a computational method
or model given an architectural application or scale.

semantic segmentation are distributed across most architectural applications and scales, others occur in more
speciic contexts. For instance, image regression is mostly used at the urban scale (i.e., at street or neighbourhood
level). This could be due to the diiculty of cross-referencing data sources at smaller scales as current image
datasets usually do not identify individual buildings (except for landmarks). Overcoming this challenge might
unlock signiicant potential for the use of image regression in future architectural studies.

Machine learning methods tend to be distributed across all applications and scales, except for ensemble models
- although the sample size is too small (n=6) to generalise. Ad hoc features (including SIFT, Haar, HoG, steerable
ilters, etc.) are a special case in this table, as they are not a predictor but an intermediate representation that is
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Fig. 4. Relative co-occurrences (row-wise). Each value represents the probability of occurrence of an architectural application
or scale given a computational method or model.

input into other models (e.g., SVMs). They were very popular in computer vision before deep learning methods
developed and demonstrate the usefulness of older methods. In particular, Figure 4 shows a distribution across all
architectural applications and scales, with a stronger co-occurrence at small scale. Again, this can be explained
by rectiied façade images being more structured, enabling models that use smaller amounts of data to perform
relatively well.
To further analyse temporal diferences, Fig. 5 breaks down publication numbers for each year across all

architectural aspects and computational approaches. The use of computer vision to solve architectural problems
such as urban scene understanding, texture, aesthetics, facade, and 3D analysis only seem to become popular with
the emergence of deep CNNs. Similarly, studies into heritage, style, and building element analysis - all occurring
at larger architectural scales (urban scene and above) - have beneited from earlier computer vision methods
(typically SVMs used with ad hoc features for image classiication or object detection). This suggests that the
ability of deep CNNs to process large amounts of unstructured data has signiicantly expanded the applications
of computer vision to architectural and urban studies.
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Fig. 5. Number of publications per year for each computational and architectural aspect.

3.4 Data sources and curation

Data sources can be distinguished in two ways: by their acquisition method and their geographic location. While
the former has important implications for the image scale, spatial and temporal resolution, dataset size, and
preprocessing and annotations required, the latter directly inluences the generalisability of the techniques and
indings used.

3.4.1 Acquisition method. Architectural and urban research uses a wide range of image sources and acquisition
methods including street-view imagery (36% of studies), photographs scraped, downloaded or taken by the
authors (34%), online repositories (32%), online maps (9%), and images extracted from vector and 3D data (4%) or
video frames (3%). As noted by [65], there is a lack of image datasets speciically for architectural applications,
with researchers often having to create their own: in fact, 84% of the works surveyed in this review did so.

Of the reviewed studies, 25 use photographs both from existing, generic datasets such as ImageNet [32] and
building-speciic ones such as CMP, eTRIMS or Graz50[1, 42, 64, 66]. This type of dataset can be used for training,
but it is also commonly used as an out-of-sample dataset to evaluate the performance of a model. The main
advantage of computer vision datasets is that they are readily available for training and evaluation purposes,
requiring little preprocessing, as images are already labelled, and for some facade datasets, already rectiied.
Combining these datasets, however, might require label homogenisation. The main drawback of these existing
datasets is that images come with almost no context or metadata such as geographic coordinates or timestamp,
making it diicult to combine them with non-visual data sources. Additionally, existing datasets do not currently
have a diverse class group needed for a nuanced representation of architectural features and, therefore, are
predominantly used in high-level or proof-of-concept studies.

An alternative acquisition approach is to download images from websites following a keyword search, using
image repositories such as Flickr [34, 65, 104], Wikimedia [37, 65, 100], Google Image Search [16, 34, 82] or various
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real estate websites [82, 106]. While the irst two sources make inding images easy and permit their use under a
CC licence, pictures of landmarks and special interest buildings vastly outnumber those of common buildins.
The quality of the metadata is also the most inconsistent of all acquisition methods, because it depends on user
annotations, resulting in various misclassiication errors. Overall, assembling datasets based on images scraped
from image websites requires checks of user-generated tags for accuracy. Real estate websites fare generally
better in that regard, but their images are typically protected by copyright [106] and building locations can be
purposefully inaccurate for privacy reasons. Some image data is captured by the researchers themselves [86, 94],
even including physical synthetic data such as pictures of artiicial avian faeces [57]. This creates new opportunities
for collaboration when producing custom-made datasets, taking into account both architectural expertise in
classifying built environment features and computer vision expertise how to best process the data . While this
approach ofers optimal control and consistency, the size of the datasets depends on the resources available to
the researchers, often resulting in small datasets or highly localised data. While models trained on these images
might perform well on the original dataset, generalisability can be poor.

Street-view imagery is the data source of 32 studies, mainly taken from Google Street View but also including
alternatives such as Baidu Total View [64, 101, 109]. Images are used at diferent scales: in their entirety (in
streetscape analysis), by extracting individual building façades, or by identifying individual building elements
(such as doors and windows). Some use images directly in their panoramic form, others require a rectiication
step [1, 11]. The pros and cons of street-view imagery for urban research have been discussed at length by
Cinnamon and Jahiu in a recent review [17]. Generally, the main advantages of street-view imagery include
a rapid data collection at a relatively low cost, dense coverage in some areas, relatively precise geographic
coordinates, and the possibility of temporal analyses (although panorama locations are inconsistent over time).
The main limitations include occlusions and distortions as well as uneven spatial coverage and frequency of
updates.

Satellite and aerial imagery are utilised in 13 and 7 papers respectively, with free-access images sources including
the ISPRS 2D Semantic Labeling Contest [5, 49], images collected by the ZY3-01 and JL1-07 satellites [44], and
images from the Sentinel satellite programme by the European Space Agency [15, 84]. These sources ofer great
spatial coverage and precise geographic coordinates, permitting their combination with other data sources. But
publicly available remote sensing data often comes only in low resolution. While this is suicient for the spatial
analysis of a whole region, it is not suitable for a analysis of areas smaller than a street block. While the plan view
of individual buildings is valuable to gauging general information about size, layout, or materials, the lacking
image resolution of public data prevents more detailed studies.

In addition, some studies use of hybrid datasets, combining either diferent image sources or image data with
other data types. Bódis-Szomorú[7] investigates datasets combining street-level and aerial images to automate
the updating of 3D urban models. J. Kang et al. [50] supplement remote-sensing data and geographic information
with street-level imagery to develop a broader building-use classiication based on individual building analysis.
Research combining visual with statistical data includes architectural applications of machine learning that
previously might not have been possible or evident when using other analytical approaches. For instance, Helber
et al. [39] propose a multi-scale machine learning approach to analyse aerial and satellite images in conjunction
with socio-economic data to predict property value classes based on image features, Jean et al. [48] pair statistical
data of expenditure measurements from the World Bank’s Living Standards Measurement Study with Google
Static Maps and satellite imagery from the Nighttime Lights Time Series to predict poverty levels, and Su at
al. [90] combine high-resolution remote sensing images and statistical data for their urban scene analysis. Hybrid
datasets can overcome the limitations of a single data source, but require signiicant preprocessing to integrate
diferent data.
Generally in the analysed studies greater importance is given to the data processability by computer vision

algorithms than the quality and accuracy of architectural representation. Some studies provide very limited
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information on the image sources [1, 6, 45] and the use of public-domain data without verifying that architectural
features are identiied correctly is prevalent. Problematic sources include Flickr and Google, as image tags and
keywords are often provided by non-experts. None of the research uses available digital image libraries tagged
by architectural experts, such as RIBApix (image repository of architectural assets curated by the Royal Institute
of British Architects) or the Cities and Buildings Database by the University of Washington. This highlights a
need for greater cross-disciplinary collaboration.

3.4.2 Geographic location. Context is essential to understand buildings from an architectural perspective, whether
the goal is to assess building style, age, and use, or to combine visual and statistical data. Geographic building
location is an especially important information. In the works surveyed, this information is mainly found in
custom datasets, but is often provided are at city or country level and only rarely at the building level [110]. No
location information is found in 21% of the works. Where the information is given, the location shows a signiicant
concentration of studies in North American, West European, and East Asian countries (Table 2). This bias has
implications for the generalisability of the results. For instance, Lotte et al. [66] observe the poor performance of
their model trained on mostly European data when applied to a Brazilian context. A limited model transferability
might be due to diferent urban characteristics [13] or architectural styles [52, 69] found in diferent cities and
countries. For example, Nguyen et al. [75] inding that "visible utility wiresž are an indicator of physical disorder
in the USA are not generalisable, as in countries like Japan the power grid is above ground.

3.5 Reproducibility and comparability

The term “Reproducibilityž is deined by the USA’s National Information Standards Organization as the ability
to recreate “computational results using the author-created research objects, methods, code, and conditions of
analysisž (NISO RP-31-2021). Likewise, the Association for Computing Machinery states: "For computational
experiments [...] an independent group can obtain the same result using the author’s own artifactsž (ACM 2020).
The reproducibility of the surveyed papers and the comparability of diferent approaches to the same problem was
assessed by checking if the code, custom data, and trained models used by the authors are available. In addition,
criteria of reproducibility, speciic to machine learning methods, were considered: if the hyperparameters, data
splits (training/validation/test), and machine learning software were speciied, as well as information such as
training and/or inference times and hardware speciications.

The analysed reproducibility criteria are given in Table 3. Each criterion is shown as a percentage of relevant
works. For instance, all works rely on code, so there are 88 relevant works for “codež and “hardwarež, but 6
do not use machine learning [59, 67, 83, 92, 99, 111], resulting in only 82 counts for “ML software usedž and
“Training/inference timež. The irst three criteria (“codež, “custom dataž, and “trained modelž) are counted as “fully
disclosedž if the artefacts are either available online, upon request, or can be recovered by running a script (for
“Custom dataž).

The results presented in Table 3 show very low levels of reproducibility: 78% of works are published without
any code, 91% without trained models (for those that train their own), and 81% of custom datasets are unavailable
(including data that used to be available online but has not been maintained). The results are better for machine
learning implementation details: 40% of works provide a full list of hyperparameter values, 80% provide their data
splitting strategy (training/validation/test, k-fold cross-validation, or a mixture of both), and 66% disclose the
software or framework used. (It is worth noting, however, that the exact version of the software is seldom men-
tioned, which is problematic when the hyperparameters are said to be left to “default valuesž.) Training/inference
times and hardware speciications are also rarely mentioned.
The comparability of the works was assessed in terms of the diversity of evaluation metrics used for the

same type of task. Table 4 shows the number of occurrences of each metric that appeared in more than one
paper. Metrics appear to be more variable for image classiication and semantic segmentation than for image
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Table 2. Occurrence of geographic locations in each custom image dataset. (Hong Kong was considered separately from
China because of its specific context in terms of architecture and data access.)

Location Continent Occurrences

US North America 22
UK Europe 17
France Europe 12
China Asia 9
Hong Kong Asia 6
Canada North America 5
Germany Europe 5
Netherlands Europe 5
Spain Europe 5
Austria Europe 4
Italy Europe 4
Japan Asia 4
South Korea Asia 3
Switzerland Europe 3
Australia Oceania 2
Belgium Europe 2
Czech Republic Europe 2
Denmark Europe 2
Malawi Africa 2
Mexico South America 2
Nigeria Africa 2
Russia Europe 2
Rwanda Africa 2
Singapore Asia 2
Tanzania Africa 2
Uganda Africa 2
Angola Africa 1
Argentina South America 1
Benin Africa 1
Brazil South America 1
Burkina Faso Africa 1
Cameroon Africa 1
Côte d’Ivoire Africa 1
Democratic Republic of Congo Africa 1
Ethiopia Africa 1
Ghana Africa 1
Greece Europe 1
Guinea Africa 1
India Asia 1
Kenya Africa 1
Lesotho Africa 1
Luxembourg Europe 1
Mali Africa 1
Mozambique Africa 1
New Zealand Oceania 1
Romania Europe 1
Senegal Africa 1
Sierra Leone Africa 1
South Africa Africa 1
Sweden Europe 1
Thailand Asia 1
Togo Africa 1
Turkey Europe 1
Ukraine Europe 1
Vietnam Asia 1

regression and object detection. This is in part due to the fact that the suitability of a metric depends on the
number of classes and their relative proportions. When classes are balanced, accuracy is the simplest metric to
compute and compare but many subtle variants exist (such as average accuracy per class or per random split).
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Table 3. Disclosure/availability of each reproducibility criterion, as a percentage of works to which the criterion applies.

Reproducibility criterion Relevant works Fully disclosed (%) Partially disclosed (%) Undisclosed (%)

Code 88 13.6 8.0 78.4
Custom data 74 14.6 4.4 81.1
Trained model 78 5.1 3.8 91.0
Hyperparameters 78 39.7 21.8 38.5
Data split 78 79.5 6.4 14.1
ML software used 82 65.9 N/A 34.1
Training/inference time 82 20.7 6.1 73.2
Hardware 88 36.4 N/A 63.6

Table 4. Occurrence of each evaluation metric.

Computer vision task Evaluation metric Occurrences

Image classiication Accuracy 35
Confusion matrix 16
F1 score 9
Precision 8
Recall 7
Cohen’s kappa 3
Error rate 3
ROC curve / AUC 3
Kendall’s rank correlation 2

Semantic segmentation Accuracy 8
F1 score 6
Recall 4
Precision 3
Confusion matrix 3

Image regression R2 7
MSE 5

Object detection Average Precision 5

The error rate is the diference between 1 and the accuracy, and its choice remains unusual. The ROC curve
(and its associated AUC) is a possible alternative that is more speciic to ranked predictions. For classiication
problems with imbalanced data, a more detailed analysis of the papers reveals a split between those providing
the F1 score, precision and recall on one hand, and those using Cohen’s kappa coeicient on the other. Since both
F1 and kappa can be used in a binary or multi-class setting (by averaging F1 over classes), this choice appears
rather arbitrary. Lastly, confusion matrices are common for multi-class problems, but are diicult to compare
across papers because classes are rarely consistent (even for the same task). Overall, while the choice of metric
remains task dependent, it is not always consistent across papers solving similar problems, and rarely justiied by
the authors. Moreover, only 7 papers provide some measure of standard deviation or variance for their metrics,
making it more diicult to assess the signiicance of future improvements.
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4 DISCUSSION

4.1 Research trends

There is an extensive application of machine learning in the analysis of architectural features from a computer
science perspective. Thereby two signiicant ways in which recent studies engage with architectural questions
and problems can be identiied. The irst optimises algorithmic methods of image analysis by applying them to
image data of architectural or urban environments. This uses both existing and custom-made image recognition
models. The primary objective of this type of research is to improve process expediency [77], optimise processing
tasks, or enhance accuracy [19, 49]. Once automated, the virtual scene understanding is then deployed in space
navigation and virtual visual servoing [97]. The contribution of this kind of research is automating work that is
otherwise labour-intensive, thus enabling it to be undertaken faster and at a greater scale and frequency. The
shortfall of eiciency-oriented research is that architectural objectives lack suicient detail and accuracy, and
that their focus remains high-level, which can make the results prone to bias.

The second type of research applies existing or custom-made machine learning systems to the analysis of data
useful to answering questions arising in the architectural domain, such as a correlation between streetscape
aesthetics [83], poverty levels [48] or visual indicators of architectural styles [25, 34, 62, 76, 86, 87, 102]. This
includes the qualitative analysis of visual clues and perceived attributes that, for example, might indicate urban
gentriication [46] or speciic urban environmental conditions [26, 74, 83]. But it also includes the quantitative
analysis of buildings and their elements [24], and is sometimes combined with statistical data. Machine learning
provides thereby new methods of data analysis with potential for novel understandings of the built environment.

The emerging research that brings together architectural application and computer visionmethods is still largely
exploratory, and no single dominant interdisciplinary practice has yet emerged. There is thus no standardised
evaluation method. There is, consequently, an opportunity to further explore research objectives and processes
that are more holistic, collaborative, and interdisciplinary.

4.2 The importance of datasets

Image and hybrid datasets play a key role in the training and testing of computer vision models. Images of
buildings are studied from diferent viewpoints and at diferent scales, such as street level and elevational or
satellite and aerial views, and have a wide range of sources: new photographs, ready-made datasets, scraped
data from websites, or collected through custom or public APIs (such as GSV panoramas). Almost none of the
reviewed records use the same dataset and data preprocessing and curation needs vary greatly. Moreover, very
few of the custom datasets are available online, which might be in part due legal restrictions (copyright law,
breach of End User Licence Agreement, etc.).
There are thus challenges around data acquisition and annotation. Crowdsourcing, for instance, can be

unreliable. A level of expertise is required to label and class some images, for example, in an architectural
dataset [101]. Additionally, data that seems homogeneous might in fact cover diferent categories. Chu and
Tsai [16] classify architecture according to Gothic, Georgian, Korean, and Islamic styles, but while Gothic and
Georgian refer to speciic art-historical styles and periods, Korean and Islamic are much broader classiications.
More generally, the positionality of the annotators is almost never considered, even though it can afect qualitative
evaluations such as the deinition of “formalž versus “informalž settlements [45] or the collection of “uglyž rooms
online [82].
The papers indicate that architectural image datasets are predominantly utilised in computer science studies

with a focus on the computational aspects of image analysis and processing and a single database or building scale.
From a built environment perspective, however, there is greater value in emphasising urban and architectural
analysis, which requires overcoming the current limitation of image datasets that lack context and metadata for
an interoperability with other data sources (e.g., statistical surveys).
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4.3 Pitfalls of computer vision in architectural analysis

The current lack of reproducibility and comparability in much of the reviewed work indicates that research at the
intersection of computer vision and architecture is still very exploratory and emerging. Based on this analysis,
three main pitfalls that are particularly prevalent when attempting to tackle architectural issues with a computer
vision-based approach can be identiied.

The irst pitfall is ambiguous training data, which is mentioned in 11 of the works that use image classiication.
Architecture is rife with typologies and classiications (housing type, use class, style, etc.) that try to capture
the diversity of the built environment and involve complex deinitions and edge cases. Architectural styles, for
instance, are diicult to deine precisely [102] as they involve a variety of visual and structural cues, can be
combined and transformed and present signiicant variation across buildings with diferent use classes. The irst
step to address this is to ensure that samples are correctly labelled (especially in the case of crowdsourced data).
Second, if the error on the training step is unexpectedly high, this might be a case of underitting: the model
does not manage to capture the complex visual relationships that deine a class, which might call for a deeper
network or a more advanced optimisation algorithm. Third, visual data might simply not be enough to separate
the classes unambiguously. In that case, a hybrid dataset should be considered.
The second pitfall is class imbalance, especially common in semantic segmentation and object detection

(mentioned in 10 works). It typically occurs in urban scene understanding at aerial or satellite scale, where
buildings are small compared to their surroundings or land use classes are unevenly distributed. This problem
can be tackled by various strategies, such as minority over-sampling [27], online hard example mining [88], or by
modifying the optimisation using, e.g., a focal loss [61].

The third pitfall is view sensitivity, which is a typical problem in street-level analysis. Kim et al. [53] provide
a thorough quantitative analysis of the impact of panorama locations on attributes computed from semantic
segmentation. However, view sensitivity afects all computer vision tasks due to occlusions, self-occlusions,
relections (for glass buildings), and distortions (for high buildings in narrow streets). Potential approaches to
mitigate these problems include using a trained model to detect and remove occluded views, combining visual
and non-visual data, or combining inferences from diferent views of the same building.

5 CONCLUSION: CHALLENGES AND DIRECTIONS OF BUILT ENVIRONMENT RESEARCH

This review demonstrated that studies of the built environment that adopt computer vision methods use two
main approaches. The irst is to automate classiication tasks by mirroring established manual methods of visual
analysis, such as the interpretation of architectural or urban elements. Machine learning ofers hereby the means
to perform quantitative or qualitative analysis at scale. The second approach utilises machine learning as a tool
for data processing and analysis to raise novel questions in architectural and urban studies, with the potential for
new insights through methodological innovations. Table 5 summarises the identiied current research trends and
potential future directions.

Future research with built environment applications calls for a greater integration of architectural and computer
science methods and aims. For example, automating visual survey methods already in use in architectural practices
using computer vision can only make labour-intensive tasks more afordable and data analysis more signiicant
when the visual-spatial criteria and their assessment are well deined and the data used is reliable. Research
focused on computer vision problems is unlikely to be relevant to built environment studies unless it is part of a
larger research process and questions that integrate disciplinary speciicities and analysis. This crossdisciplinary
approach has great potential for built environment studies and analysis, making it not only more scalable but
also data- and evidence-based, which can ultimately inform design and policy decisions. Shifts in aims and a
combination of research and analytical processes across disciplinary boundaries also ofer opportunities for
methodological innovation and new research outputs with potentially signiicant real-life impact. The value
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Table 5. Current research summary and future directions

Built environment research

Objectives and applications

Analyse visual-spatial characteristics of building and urban elements for their classiication
and identiication (e.g. styles, typologies, geolocations)
Rationalise spatial qualities or quantities by rating visual indicators (e.g. building valuations,
building conditions, neighbourhood qualities, walkability)
Infer demographic characteristics from visual-spatial analysis (poverty, gentriication).
Understand non-physical (virtual) space and generic typologies

Beneits

Automation of labour-intensive work
Methodological innovation for novel understanding of built environment based on existing data
New insights through transdisciplinary approaches
Leveraging existing datasets

Challenges
Generalisability of indings
Reproducibility and accuracy of processes
Data problems: access, quality, reliability, interoperability, frequency

Future directions

Transdisciplinary approaches to data curation for both qualitative and quantitative visual-spatial
analysis
Interoperability of visual with other data types to understand and rate spatial relationships or
characteristics (e.g. to inluence decision-making processes, policy, property value estimation,
building condition survey)
Integration of multiple feature analysis with diferent built environment scales (e.g. to predict
urban and developmental trends, infer use and occupancy)
Democratisation of building-related data

Machine learning objectives

Test or compare the expediency of classiication algorithms
Improve the performance and accuracy of image analysis or ML systems (e.g., image segmentation, object or texture detection,
object extraction)
Test methods to infer information from multiple datasets
Identify methods to exploit existing architectural and urban image data

for architectural research and analysis is numerous: the growing body of research promises beneits for design
optimisation, architectural precedent analysis, and policymaking by providing newmeans of evaluating diferences
or changes in the built environment.

A key challenge is the availability and processing of data. Diferences in data speciication, accuracy, interoper-
ability, creation, and access need to be resolved to create comparable and integrated datasets. To achieve this,
greater collaboration between diferent disciplines is needed to ensure that both diferent expertise and require-
ments are taken into full consideration. Existing image datasets tend to lack context and metadata beyond GPS
coordinates and crowdsourced labels. Resolving data-related problems is especially important when automating
the collection of large amounts of data, whether once or at regular intervals. Once this is resolved, analysis that
was previously impossible due to highly labour intensive processes can be undertake at ease and repeatedly over
time, opening up new forms of analysis and a reliable evidence base currently not available to built environment
studies.
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Another key challenge is the reproducibility and comparability of computer vision-driven architectural research.
While many works so far have been exploratory, future research is likely to seek to conirm current results
and improve the state of the art. This requires greater transparency around implementation and data sources.
Importantly, it also requires an agreement on assessment metrics meaningful to both computer scientists and
architects but also useful for real-world applications related to design decisions or policy.

A particularly promising direction for future research is the integration of visual and non-visual data. Research
might consider both building elements and context and combine image sources (like aerial and street views)
and other data such as statistical information (e.g. census data, household size, property type information,
building age, and socio-economic or environmental statistics). The use of visual indicators in conjunction with
existing building-related data, at both a speciic point but also over time, has signiicant potential to create new
interdisciplinary approaches, improving on both existing quantitative and qualitative research methods. This can
in turn inform design decisions, building safety assessment, maintenance planning, real estate evaluation, and
planning or socio-economic policies.
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