
For Peer Review

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Computer vision-based analysis of buildings and built environments: A
systematic review of current approaches

ANONYMOUS AUTHOR(S)∗

Analysing 88 sources published from 2011 to 2021, this paper presents a first systematic review of the computer vision-based analysis
of buildings and the built environments to assess its value to architectural and urban design studies. Following a multi-stage selection
process, the types of algorithms and data sources used are discussed in respect to architectural applications such as a building
classification, detail classification, qualitative environmental analysis, building condition survey, and building value estimation. This
reveals current research gaps and trends, and highlights two shared primary research aims. First, to optimise algorithms for image
processing by solving feature-recognition challenges found in architectural image data, which can be used to automate time-consuming,
labour-intensive, or complex tasks of visual analysis. Second, to explore the methodological benefits of machine learning approaches
to raise new questions about the built environment by relating visual, social, statistical, and qualitative data, which can overcome
limitations of conventional analogue analysis. The growing body of research offers new methods to architectural and design studies,
with the paper identifying future challenges and directions of research.
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1 INTRODUCTION: COMPUTER VISION IN BUILT ENVIRONMENT STUDIES

A growing number of disciplines, including architecture, explore data-driven applications in the analyses of new or large
digital datasets [20]. The use of analog and digital data in architectural practice and theory is well-established in studies of
design processes [21], buildings, and urban fabrics. Common topics include manufacturing [7], design sustainability [80],
environmental impact [46], and morphology [32]. The increased availability of digital data repositories such as Energy
Performance Certificates (EPCs) or property- and planning-related records creates new applications and potential to
analyse the built environment. Large scale image data processing and acquisition, in particular, form an emerging area
of research in the built environment and studies of its design.

Computer visionmethods (including image-basedmachine learning) applied to buildings as well as larger architectural
and urban domains can be grouped into four clusters of research: (i) landmark and place recognition, (ii) generative design
and modelling, (iii) remote sensing, and (iv) the analysis of urban environments. Landmark recognition approaches
have been reviewed by T. Chen et al. [14] and Bhattacharya and Gavrilova [8], while Garg et al. [30] compared visual
place recognition methods. New applications of artificial design and urban environment modelling were assessed by
Sönmez [91] and Feng et al. [27]. A review of deep learning applications in remote sensing by Ma et al. [67] proposed a
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taxonomy based on four main tasks: image preprocessing, classification, change detection, and accuracy assessment.
Lastly, four reviews investigated the use of street-view imagery for the analysis of urban environments [9, 17, 37, 50].

Althoughmany of these recent reviews touch on aspects of building recognition, there has been no detailed assessment
of computer vision-based applications focusing on architectural analysis across image sources, with an emphasis on
usefulness and limitations for architectural studies and practice. The opportunities for architecture, however, are
numerous: the growing body of research promises benefits for design optimisation, architectural precedent analysis,
and policy making by providing new means of evaluating differences or changes in the built environment. This paper
is a first systematic review of the state-of-the-art of computer vision in the analysis of the built environment and in
relation to applications at different architectural and urban scales. It compares the research foci, computer vision and
machine learning approaches, and data acquisition and curation processes found in recent studies to identify trends and
challenges of this often transdisciplinary research as well as future directions and value this might bring to architectural
and urban design studies.

A detailed review of 88 sources identified two primary objectives in recent research: 64% of studies test or improve
the performance of existing and novel algorithms by applying them to architectural datasets (Fig. 1a) and 36% assess the
methodological benefits and outcomes of using computer vision techniques to ask new questions in the architectural
domain (Fig. 1b). For example, the automation of architectural recognition and classification tasks can expedite otherwise
labour- and time-intensive processes such as the recognition of building elements, assigning street views to specific
cities or inferring neighbourhood statistics. Past research demonstrates the value of computer vision-based methods of
analysis in the architectural domain, such as a correlation of visual and statistical or demographic data. This paper
discusses how new questions about urban gentrification, real-estate values or specific characteristics of the built
environment can be asked with potential to inform decision-making by designers, occupants, and policymakers.

The aim is further to contribute to a much needed transdisciplinary evaluation of intersections between computer
vision and architectural or urban design studies to strengthen the reliability and methodological rigour of research.
Disciplinary differences in understanding and assessing computer vision or spatial design problems can lead to
misunderstandings that must be resolved to fully realise the potential of computer vision approaches in architecture.

This review makes the following contributions:

• It proposes an application-centred classification of the current literature at the intersection of computer vision
and architectural analysis.

• It analyses the current trends and research gaps according to that classification.
• It assesses the current state of data sources in the field, both in terms and acquisition methods and geographic

locations.
• It evaluates the reproducibility and comparability of computer vision-driven architectural research, and outlines

the main pitfalls found in that field as well as possible solutions.

This review is organised into four sections. A methods section provides details on the criteria formation for the
inclusion of reviewed papers and sources. This is followed by a summary of the search results and main findings In
terms of the contributions highlighted above. A discussion section then highlights the main trends, challenges and
pitfalls faced by researchers in the field. Finally, the concluding section makes recommendations on key future research
directions identified through the review.
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(a) (b)

Fig. 1. Publications focused on: (a) innovating machine learning tool by applying them to architectural datasets by year, (b) formulating
novel questions by employing machine learning techniques in the architectural domain by year.

2 METHODS

This paper uses the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method [78, 79]
and a robust multi-stage selection process. Primary and peer-reviewed sources were selected through a keyword search
of the IEEE Xplore, JSTOR, Scopus, Semantic Scholar, and Google Scholar databases, as well as via Google Search, to
identify studies using computer vision in the context of the built environment. Given a noticeable increase in studies
over the last five years, this review is limited to research published from 2011 to 2021 to capture the most recent trends.

A challenging aspect of this search is the overlap of terms widely used in both computer science and architecture.
The meaning of keywords such as “architecture”, “structure”, “model”, “design” or “building” depends on disciplinary
contexts and might refer to significantly different concepts. For example, the initial search for the keywords “machine
learning” together with “architecture” brought up publications that used the term “architecture” to describe the structure
of machine learning systems. Using less ambiguous words such as “façade”, “urban”, “city” or “ornament” produced better
results in identifying literature relevant to built environment studies. However, it created a risk of excluding papers
applying computer vision methods to other aspects of architecture. This problem was tackled by using a multi-stage
selection process (Fig. 2). Following the keyword search, paper titles, and abstracts were screened in respect to both
computer vision and architectural or urban analysis. References in the most relevant papers were also checked. In
addition, conference papers (if not published in a journal), online sources (e.g. research project websites), and PhD
theses were reviewed and added. This created 226 relevant records. From these, duplicates, papers not peer reviewed
or cited in peer-reviewed journals, and conference papers later republished in journals (31 records) as well as papers
referring to the “architecture” or “structure” of computational systems rather than buildings (69 records) were removed,
and 3 reports could not be retrieved. This left 123 sources that conformed with the initial search criteria.
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Table 1. Publication categories of the works analysed in this review.

Publication category Number of publications

Computer science and technology 43
Remote sensing 14
Architecture and urban studies 8
Geography/geoinformation 4
Computer science and design 4
Computer graphics 3
Technology 2
Computer science and architecture 1
Economics 1
VR 1
Environmental Research 1
Natural Sciences 1
PhD Thesis 1
Online sources 4

A large body of work looked at the application of machine learning in scene recognition for the purpose of navigation
and obstacle detection in self-driving vehicles. Although some relate to building analysis, due to their overlap in
methodology with papers included in this review, these were omitted from analysis. Furthermore, studies that explored
generative rather than analytical systems were excluded, as were those that only used non-visual data or 3D datasets
such as point clouds. Both were considered outside the scope of the paper. Removing 35 records, this finally left 88
sources for further analysis in this review.

Two types of information in the publications were compared: (i) types of algorithms and methods applied in the
studies, through the scope of machine learning models and computer vision tasks and (ii) proposed architectural
application (such as urban scene understanding or heritage/style analysis), at different scales (from building detail to
satellite) and via different data sources.

3 FINDINGS

3.1 Search results

The compared 88 sources included 29 conference papers, 54 journal papers, 5 online reports, and 1 PhD thesis. Most
papers were published in computer science journals (38 articles), followed by journals on remote sensing (13 articles)
and architectural and urban studies (8 articles). Table 1 details the thematic distribution of journal disciplines per
publication.

3.2 Computer vision in architectural analysis

Visual inspections and analysis are standard in building condition surveys and evaluations, with photographs providing
a physical record and visual evidence. For example, a visual analysis of façades to determine architectural styles or
existing service provisions can be used to establish a building’s age and dwelling type, which might infer typical internal
layouts and building maintenance problems. At the same time, building elements such as window or casement types
are indicators of thermal performance and used to establish a building’s EPC rating. The size and location of windows
can also provide quantitative information about spatial and environmental aspects of quality, such as internal daylight
and sunlight penetration. Computer vision algorithms can speed and scale up processing visual information in cases
Manuscript submitted to ACM
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Fig. 2. PRISMA flow diagram of source selection for review.
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6 Anon.

such as building condition surveys. Generalising, visual data is currently used in four areas of architectural analysis:
building classification, detail classification, qualitative environmental analysis, building condition survey, and building
value estimation.

3.2.1 Image classification of building style and typology. Identifying and classifying architectural styles and typologies
is used in historical or precedent studies in architecture, with the visual analysis of building properties part of a process
to identify non-visual attributes. Stylistic features might indicate a property’s age and region or construction type. For
example, Victorian buildings in England have a distinctive façade design and internal layout. In addition, building uses
can be partially indicated by their façade, with computer vision methods utilised for this task by classifying architectural
styles [61, 70, 108] and typologies [2, 15, 49]. A classification of the whole image is typical for a high-level analysis of
architectural features such as overall urban characteristics [40] or style or use classification [59]. Chu and Tsai [16]
exploit a graph-mining algorithm to analyse images for repetitive visual patterns that differ between architectural styles.
Obeso et al. [75] use a CNN to classify Mexican architectural styles, with visual saliency introduced in the algorithm’s
network pooling layers to filter relevant features for deeper network layers. Llamas et al. [64] compare the performance
of different types of CNNs such as AlexNet or GoogLeNet when trained on pre-labelled images of heritage buildings,
and Guo and Li [36] explore improvements to LeNet-5 when applied to architectural style classification tasks.

In addition, the website Classify House A.I. allows users to upload an image of a house and, through a computer
vision-based analysis, determines which of the 31 architectural style available classifications can be recognised in
a building’s exterior (Classify A.I). In another example, Davies [19] trains an Inception V3 network to recognise
Georgian architecture from GSV images of London. Likewise, Alhasoun and González [2] use a CNN trained to match
GSV images to their corresponding US towns based on a visual classification of urban street contexts or to classify
street frontages [55]. Deep-learning models are also used to measure visual similarities between the styles of different
architects by Yoshimura et al. [104].

To enhance the architectural benefits of building image classifications, more than one characteristic should be
considered at the same time, as many exceptions to “ground truth” data can be found across all architectural styles and
typologies. For example, dwelling houses might have been converted or changed their use while façades remained the
same. Although stylistic and typological features can indicate use and occupancy, they are only one factor, with a more
nuanced multi-factor reading needed for reliable estimates.

3.2.2 Building detail detection and classification. Building details, similar to style and typology, can have visual features
specific to where a building is located, local climate, and the period it was built in. For example, traditionally high-
pitched roofs are found in regions affected by heavy snowfall. The detection and classification of building elements
involves prior feature extraction and, like style classifications might use indicators such as window designs [86] or
face-recognition algorithms (applied to sculpted heads of humans and gargoyles) as a determining feature [85]. A set of
stylistic elements extracted from street-view images is used to determine features typical for Paris (or those untypical)
in Doersch et al. [24]. In other examples, a bounding-box based object-detection approach separates building details,
either extracting whole building façades from the image and then assigning to them a particular style based on their
features [99] or extracting façade details to analyse specific building elements [19, 33, 64, 68, 96, 107]. In other cases,
semantic segmentation is applied to detect roof typologies and hedgerows maintenance levels from satellite images [77],
to map green and solar roofs [97] or in detail-oriented style analysis where authors train a classifier to distinguish
Flemish, Renaissance, Haussmannian, and Neoclassical styles [68].
Manuscript submitted to ACM
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Of the reviewed papers, almost a third (30 records) discuss semantic segmentation, which is key to extracting
elements – either whole façades from their urban context [28, 34, 62, 69] or façade elements such as doors and
windows [4, 22, 29, 51, 62, 65, 69, 105, 109]. In research that focuses specifically on semantic segmentation, the extraction
of buildings and their elements remains a problem of machine learning techniques and only becomes an architectural
question if it is forming part of a larger research process. This includes research on architectural challenges at a scale
and complexity difficult to complete using manual methods, such as extracting roof or façade textures to increase the
quality of texture patterns in 3D virtual urban models [22], reconstructing urban 3D models [35, 42], or automating
building change detection [92].

3.2.3 Qualitative analysis. The exploitation of computer vision in qualitative analysis is still in its infancy, yet, has
noticeably increased in recent years. The objective is mostly to assess the quality of streetscapes or to establish new
links between the aesthetics of an urban environment and statistical data – on education, unemployment, housing,
living environment, health, or crime [3, 31, 89]. The research project Streetscore [73] applies Support Vector Regression
to predict whether a given streetscape is perceived as safe or unsafe by viewers, and both Dubey et al. [25] and Min et
al. [71] study perceptual attributes such as “safe”, “lively”, “boring”, “wealthy”, “depressing”, and “beautiful” based on
GSV images of several US cities. A similar study investigates how visual qualities affect how a street is perceived as
walkable [103]. In a similar research, Quercia et al. [82] compared the aesthetic qualities of different areas of London. A
crowd-labelled dataset of street-view images from Boston and New York is further used to create perceptual maps for 21
US cities [57]. The online platform Scenic-Or-Not explores the rating of 200,000 images in relation to perceived qualities
of outdoor space and a CNN is applied to analyse and extract key features common to positive scores [84]. Ilic et al [45]
used a siamese CNN to GSV images of properties in Ottawa to determine levels of gentrification. Similarly, visual
preferences were examined through semantic segmentation to understand how individual components such as building
façades or greenery relate to perceptions of street space quality [100]. Šćepanović et al. [83] parsed satellite imagery of
six Italian cities to predict urban vitality criteria based on the theories of Jane Jacobs. Neighbourhood vitality was also
studied in Wang and Vermeulen [95]. Lastly, two recent studies use semantic segmentation and k-means clustering
in their urban colour analysis [23, 109]. In the analysed studies, qualitative analysis often requires combining several
datasets or applying a multi-stage methodology, or both. This has potential for informing design decisions around a
building’s form and mass, aesthetics, programme, townscape relationship or user experience, as qualitative assessments
are already frequently used in architectural practice.

3.2.4 Building condition and value estimation. Image data is an established means of assessing building conditions and
property values, using a qualitative evaluation of building conditions and a quantitative analysis of various building
features. Accordingly, several papers look at property price estimation based on a visual assessment. Law et al. [54] use
a CNN to automatically extract visual features from GSV images to estimate house prices in London, UK. Lindenthal and
Johnson [61] combine a traditional hedonic model with architectural style classifications to estimate sales price premia in
relation to architectural styles at the building and neighbourhood levels, demonstrating that machine learning classifiers
can perform as reliable as human experts in mass appraisals. Wang et al. [94] explore how an aesthetic value might
indicate property prices. Similarly, Poursaeed et al. [81] estimate house prices based on visual and textural features, with
the dataset including interior and exterior images of buildings that are classified according to levels of perceived luxury.
In Muhr et al. [72] satellite images are used to automate assessment of location quality. Computer vision algorithms have
further assisted in optimising manual tasks of labelling real estate data. Long short-term memory (LSTM) classification
algorithms and fully connected neural networks (FCNNs) are applied to real-estate scene classification to automate the
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labelling of exterior and interior features ranging from types of rooms [12] to countertops [6]. As some of the image
data is of insufficient quality, the studies also use image enhancement processes. The visual approach in the condition
assessment of buildings tends to focus on image patch analysis. Examples of this include determining single-family
house conditions based on building elements such as windows or roofs [53]. Zeppelzauer et al. [106] automate building
age estimations through a two-stage approach, first training a CNN to learn the age characteristics at patch level and,
second, globally aggregating patch-wise age estimates of an entire building. In another study, Hoang [39] applies SVM
to the image analysis of building walls, with particular attention paid to recognising building cracks as indicators of
fabric deterioration. As building condition and value estimation are conventional applications of visual analysis, the
discussed studies automate already established processes. A visual building condition survey can assist in estimating
property values, forecasting maintenance costs, or assessing a building’s state of repair, including dangerous structural
deterioration. Consequently, photographs are often used as evidence, for example, in building surveys or tenancy-related
inventories.

3.3 Trends and gaps of computer vision in architectural analysis

This section proposes a quantitative analysis of the relationship between architectural applications and scales on the one
hand, and computer vision tasks and machine learning methods on the other. This analysis is done in both directions
(what is the likelihood of an algorithm given the application, and vice versa?) via relative co-occurrence matrices (Fig. 3
and 4). These matrices differ from typical contingency tables, as categories are not mutually exclusive. Therefore, a
single article may be counted several times, and statistical methods such as the chi-squared test cannot be applied to
quantify correlations precisely. Moreover, a co-occurrence does not mean that a specific method was used to solve a
given problem, only that a method and problem were present in the same publication. But the co-occurrences still give a
general sense of the relationships between architectural aspects and computational approaches. While small differences
between co-occurrences values are not necessarily meaningful, high contrasts do suggest underlying correlations.

Fig. 3 shows the relative occurrences of computational approaches for a given architectural application or scale. It
reflects which algorithms are most likely to be used for a given application. For instance, it can be seen that CNNs
dominate architectural applications and scales, which is consistent with their widespread popularity in other fields.
Some applications, such as urban scene understanding, demographics, and façade extraction involve a relatively diverse
range of computer vision approaches. Others, such as heritage/style and aesthetic analysis have only been approached
from specific angles (image classification for the former, classification and regression for the latter). This may reveal a
knowledge gap in terms of how other algorithms and methods could perform on these applications. For instance, what
if style analysis was cast as a regression problem along various perceptual dimensions (classic/modern, rural/urban,
etc.), rather than a classification problem? Could aesthetics studies benefit from object detection? In terms of machine
learning methods, while CNNs dominate most architectural applications and scales, perhaps the more interesting case
is where they do not: the classification of building elements (thus at the scale of building details), where SVMs occur
more frequently. One explanation is that such an application typically involves images of façades, often rectified, and
thus present a relatively consistent structure. In this specific case, the image invariances learned by deep CNNs in
exchange for larger amounts of data might not be as useful.

Analysing the relative occurrences of architectural applications or scales for a given computational approach, as
shown in Fig. 4, also reveals interesting patterns. While computer vision tasks such as image classification, object
detection, and semantic segmentation are distributed across most architectural applications and scales, others appear to
occur in more specific contexts. For instance, the scale of image regression is mostly that of urban scenes (i.e., at street or
Manuscript submitted to ACM
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Image classification 0.29 0.95 0.46 0.41 0.45 0.41 0.19 0.00 0.50 0.59 0.36 0.27 0.29

Image regression 0.19 0.00 0.00 0.07 0.45 0.31 0.05 0.00 0.07 0.03 0.23 0.09 0.24

Object detection 0.15 0.05 0.23 0.37 0.00 0.13 0.29 0.23 0.23 0.10 0.08 0.09 0.18

Semantic segmentation 0.33 0.00 0.23 0.11 0.09 0.16 0.33 0.46 0.13 0.21 0.26 0.45 0.24

Scene reconstruction 0.04 0.00 0.08 0.04 0.00 0.00 0.14 0.31 0.07 0.07 0.08 0.09 0.06

Total 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

CNN 0.60 0.50 0.64 0.39 0.57 0.62 0.63 0.63 0.41 0.63 0.66 0.64 0.50

SVM 0.21 0.30 0.18 0.43 0.07 0.18 0.31 0.13 0.37 0.19 0.11 0.18 0.25

MLP 0.04 0.00 0.09 0.04 0.14 0.12 0.06 0.13 0.07 0.07 0.11 0.09 0.00

Ensemble 0.09 0.10 0.09 0.09 0.00 0.00 0.00 0.00 0.04 0.07 0.03 0.00 0.13

Other predictor 0.06 0.10 0.00 0.04 0.21 0.09 0.00 0.13 0.11 0.04 0.09 0.09 0.13

Total 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Fig. 3. Relative co-occurrences (column-wise). Each value represents the probability of occurrence of a computational method or
model given an architectural application or scale.

neighbourhood level). Although image regression could theoretically be used at smaller scales, one explanation for this
limitation is the difficulty of cross referencing data sources at the building level, since current image datasets usually do
not identify individual buildings (except for landmarks). Overcoming this challenge could unlock significant potential
for future architectural studies. Machine learning methods tend to be distributed across all applications and scales,
except for ensemble models, although the sample size is too small (n=6) to generalise. Ad hoc features (which include
SIFT, Haar, HoG, steerable filters, etc.) are a special case in this table, as they are not a predictor but an intermediate
representation that is input into other models (e.g., SVMs). Since they were very popular in computer vision before
deep learning methods were developed, they were added to the tables as an interesting indicator of older methods that
continue to be useful. In particular, Table 4 shows a distribution across all architectural applications and scales, with a
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Application Scale of analysis
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Image classification 0.19 0.26 0.08 0.15 0.07 0.18 0.06 0.00 1.00 0.28 0.31 0.26 0.06 0.09 1.00

Image regression 0.33 0.00 0.00 0.07 0.19 0.37 0.04 0.00 1.00 0.12 0.06 0.53 0.06 0.24 1.00

Object detection 0.21 0.03 0.09 0.29 0.00 0.12 0.18 0.09 1.00 0.41 0.18 0.18 0.06 0.18 1.00

Semantic segmentation 0.39 0.00 0.07 0.07 0.02 0.12 0.17 0.15 1.00 0.14 0.21 0.34 0.17 0.14 1.00

Scene reconstruction 0.18 0.00 0.09 0.09 0.00 0.00 0.27 0.36 1.00 0.22 0.22 0.33 0.11 0.11 1.00

CNN 0.29 0.10 0.07 0.09 0.08 0.21 0.10 0.05 1.00 0.16 0.24 0.33 0.10 0.17 1.00

SVM 0.24 0.15 0.05 0.24 0.02 0.15 0.12 0.02 1.00 0.37 0.19 0.15 0.07 0.22 1.00

MLP 0.17 0.00 0.08 0.08 0.17 0.33 0.08 0.08 1.00 0.22 0.22 0.44 0.11 0.00 1.00

Ensemble 0.44 0.22 0.11 0.22 0.00 0.00 0.00 0.00 1.00 0.14 0.29 0.14 0.00 0.43 1.00

Other predictor 0.23 0.15 0.00 0.08 0.23 0.23 0.00 0.08 1.00 0.27 0.09 0.27 0.09 0.27 1.00

Ad hoc features 0.16 0.19 0.11 0.26 0.04 0.09 0.11 0.05 1.00 0.42 0.26 0.13 0.05 0.13 1.00

Fig. 4. Relative co-occurrences (row-wise). Each value represents the probability of occurrence of an architectural application or scale
given a computational method or model.

stronger co-occurrence at small scale. This, as above, can be explained by rectified façade images being more structured
and, therefore, allowing models that use smaller amounts of data to perform relatively well.

A temporal analysis can further help to understand relationships highlighted by the previous tables. Fig. 5 breaks
down publication numbers for each year across all architectural aspects and computational approaches. In terms of
architectural applications, problems such as urban scene understanding, texture, aesthetics, facade, and 3D analysis
seem to only adopt computer vision approaches with the development of deep CNNs. A similar relationship can be
seen at larger architectural scales (urban scene and above). Other applications, such as heritage, style, and building
element analysis were able to benefit from earlier computer vision methods (typically SVMs used with ad hoc features
for image classification or object detection). This suggests that the ability of deep CNNs to process large amounts of
unstructured data has significantly expanded the applications of computer vision to architectural and urban studies.
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2011 0 0 0 0 1 1 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0

2012 0 3 0 1 0 4 3 0 1 0 0 1 4 1 4 0 1 1 0 2 3 0 0 0 1 0 2 2 0 0

2013 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2014 0 4 0 0 0 4 2 2 1 0 0 2 2 0 2 0 2 0 0 3 1 1 0 0 2 0 0 2 0 0

2015 0 1 0 1 0 2 1 0 1 1 0 1 0 1 1 0 0 1 0 0 1 1 1 0 1 0 1 1 0 0

2016 4 4 2 1 1 3 3 3 3 2 0 6 1 0 2 0 3 1 1 2 2 2 1 2 2 1 5 1 1 0

2017 9 1 2 1 1 3 7 1 2 5 1 7 3 3 3 2 2 4 3 4 5 4 0 2 5 0 5 5 1 0

2018 10 4 0 1 3 7 8 2 1 5 2 4 4 4 2 2 4 2 2 6 6 4 4 3 5 3 6 4 0 2

2019 11 1 2 0 0 0 6 3 2 2 0 4 2 0 1 2 7 0 0 1 4 5 2 1 6 1 1 4 0 0

2020 12 1 0 0 1 1 6 3 3 1 2 5 2 1 4 2 3 3 0 3 1 7 0 1 6 0 2 2 0 1

2021 10 2 0 1 1 3 5 1 1 5 1 8 1 0 0 2 4 2 2 1 2 5 2 7 4 4 3 3 0 0

Legend 0-1 2-3 4+

Fig. 5. Number of publications per year for each computational and architectural aspect.

3.4 Data sources and curation

In this section, data sources are characterised in two ways: first by acquisition method, and second by geographic
location. While the former has important technical implications in terms of image scale, spatial and temporal resolution,
dataset size, as well as preprocessing and annotations required, the latter directly influences the generalisability of the
techniques and findings presented in the literature.

3.4.1 Acquisition method. Architectural and urban research uses a wide range of image sources and acquisition methods,
including street-view imagery (36% of studies), photographs either scraped, downloaded or taken by the authors (34%),
existing data from online repositories (32%), online maps (9%), and images extracted from vector or 3D data (4%) and
from video frames (3%). As noted for instance in [64], there is a lack of image datasets for architectural applications,
which means that very often researchers need to build their own: in fact, 84% of the works surveyed in this review
created their own image dataset.

Of the reviewed studies, 25 use photographs from existing datasets, from generic ones such as ImageNet [31], to
building-specific ones such as CMP, eTRIMS or Graz50[1, 41, 63, 65]. This type of dataset can be used for training, but
it is also commonly used as an out-of-sample dataset to evaluate the performance of a model. The main advantage
of computer vision datasets is that they are readily available for training and evaluation purposes and require little
preprocessing. The images are already labelled, and for some facade datasets, already rectified. Combining these datasets,
however, may require a step of label homogenisation. The main drawback of this method is that the images come with
almost no context or metadata such as geographic coordinates or timestamp, making it impossible to combine with
non-visual data sources. Additionally, existing data sets do not currently have a diverse class group that captures a
nuanced representation of architectural features and, therefore, can only be helpful for high-level or proof-of-concept
studies.
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An alternative acquisition approach is to download images from websites following a keyword search, including
images from Flickr [33, 64, 104], Wikimedia [36, 64, 99], Google Image Search [16, 33, 81] or various real estate
websites [81, 106]. While the first two allow to easily find images under a permissive CC licence, pictures of landmarks
and famous buildings vastly outnumber those of more mundane constructions. The quality of the metadata is the most
inconsistent of all acquisition methods because it depends on user annotations, resulting in various misclassification
errors. Overall, assembling datasets based on images scraped from image websites requires further reviews of user-
generated tags to check for accuracy. Real estate websites fare generally better in that regard, owing to their narrower
application scope, but their images typically cannot be redistributed [106], and building locations can be purposefully
inaccurate for privacy reasons. Some image data is captured by the researchers themselves [85, 93], even including
physical synthetic data such as pictures of artificial avian faeces [56]. This approach creates an opportunity for a highly-
collaborative approach to producing custom-made datasets where architectural experts can advise on an appropriate
representation of specific architectural features. While this method offers optimal control and consistency, the size of
the datasets entirely depends on the resources available to the researchers, which often results in small datasets or
highly localised data. As a result, models trained on these images may perform really well on the original dataset but
generalise poorly.

Street-view imagery provides data for 32 studies, with images used at different scales: in their entirety (in streetscape
analysis), by extracting individual building façades, or by identifying individual building elements (such as doors
and windows). While most studies rely on Google Street View, other sources such as Baidu Total View can also be
found [63, 100, 109]. Some works may use images directly in their panoramic form, or require a rectification step [1, 10].
The pros and cons of street-view imagery for urban research have been discussed at length by Cinnamon and Jahiu in a
recent review [17]. To summarise, the main advantages include rapid data collection at a relatively low cost, dense
coverage in some areas, relatively precise geographic coordinates, and the possibility of temporal analyses (although
panorama locations are inconsistent over time). The main limitations include occlusions and distortions, as well as
uneven spatial coverage and frequency of updates.

Satellite and aerial imagery from different images sources are utilised in 13 and 7 papers respectively. Examples of
popular freely accessible image data sources for remote sensing applications include the ISPRS 2D Semantic Labeling
Contest [5, 48],images of Beijing and Wuhan collected by ZY3-01 and JL1-07 satellites [43] and the Sentinel satellite
programme developed by the European Space Agency [15, 83]. These sources offer great spatial coverage and precise
geographic coordinates, allowing them to be combined with other data sources (as described in the next paragraph). On
the other hand, publicly available remote sensing data often comes in low resolution only. While satellite and aerial
data available in the public domain can be used for the urban analysis of whole regions, they lack resolution that allows
for analysis at a scale lower than a street block. Plan view of individual properties is a valuable representation of the
building that can help gauge information about size, layout, or materials; however, they lack precise representation at
publicly available resolutions.

Additionally, some works make use of hybrid datasets, combining either different image sources or image data with
other data types. Bódis-Szomorú[11] investigates datasets combining both street-level and aerial images to automate
the updating of 3D urban models. J. Kang et al. [49] supplement remote-sensing data and geographic information with
street-level imagery to develop a broader building-use classification based on individual building analysis. Research
combining visual with statistical data includes architectural applications of machine learning that might have not
previously been possible or evident when using other analytical approaches. For instance, Helber et al. [38] propose
a multi-scale machine learning approach to analyse aerial and satellite images in conjunction with socio-economic
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data to predict property-value classes based on image features, while Jean et al. [47] pair statistical data of expenditure
measurements from the World Bank’s Living Standards Measurement Study with Google Static Maps and satellite
imagery from the Night time Lights Time Series to predict poverty levels.Finally, Su at al. [88] combined high-resolution
remote sensing image and statistical data for the purposes of urban scene analysis. Hybrid datasets are a powerful way
to overcome the limitations of a single data source, but they require a significant amount of preprocessing to integrate
the data.

Overall, greater importance is given to making data processable by computer vision algorithms than to ensure the
quality and accuracy of architectural representation in the data. Some studies therefore provide almost no information
on their image sources [1, 6, 44], and the use of public-domain data without verifying if architectural features are
identified correctly is prevalent. This includes Flickr or Google data, as image tags and keywords are often provided by
non-experts. None of the research uses available digital image libraries tagged by architectural experts, such as RIBApix
(image repository of architectural assets curated by the Royal Institute of British Architects) or the Cities and Buildings
Database by the University of Washington. This demonstrates that a more transdisciplinary collaboration would be
beneficial to make the most out of the sources available.

3.4.2 Geographic location. Context is essential to understand buildings from an architectural standpoint, whether the
goal is to assess building style, age, use, or to combine visual and statistical data. One of the most important pieces of
information is the geographic location of the building. In the works surveyed, this information is part of the custom
datasets at a high level, most often providing the city or the country to which each building belongs, and much more
rarely the exact longitude and latitude [110]. No location information is provided in 21% of the works. For those that do
provide the information, the location shows a significant concentration in North American, West European and East
Asian countries, as shown in Table 2. Moreover, across all countries, images appear to be almost exclusively collected in
university cities (with the exception of aerial and satellite imagery).

This bias has strong implications in terms of the generalisability of the results found in the literature. For instance,
Lotte et al. [65] observe the poor performance of their model trained on mostly European datasets when applied
to a Brazilian dataset. Limited model transferability may be due to different urban characteristics [13] or different
architectural styles [51, 69] across cities and countries. Sometimes assumptions are made which would not generalise
across countries: for instance, Nguyen et al. [74] consider “visible utility wires” to be an indicator of physical disorder in
the USA, while most of Japan’s power grid is above ground. The few papers that sample the long tail of less-surveyed
countries focus on issues of economic development and well-being [47, 101], and do not adopt a global focus either.

3.5 Reproducibility and comparability

The papers were also analysed in terms of the ability to reproduce their results independently, as well as the comparability
of different approaches to the same problem. The term “reproducibility” used in this review follows the definition
provided by the USA’s National Information Standards Organization as the ability to regenerate “computational results
using the author-created research objects, methods, code, and conditions of analysis” (NISO RP-31-2021). This is also the
definition followed by the Association for Computing Machinery: “For computational experiments, [...] an independent
group can obtain the same result using the author’s own artifacts” (ACM 2020). Although reproducibility is a weak form
of replicability, which refers to the ability to obtain the same results using independently developed artefacts (including
code and data), it encourages the clarity and transparency required for replicability. In this review, reproducibility was
assessed in first approximation by checking whether the code, custom data and trained models used by the authors are
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Table 2. Occurrence of geographic locations in each custom image dataset. (Hong Kong was considered separately from China
because of its specific context in terms of architecture and data access.)

Location Continent Occurrences

US North America 22
UK Europe 17
France Europe 12
China Asia 9
Hong Kong Asia 6
Canada North America 5
Germany Europe 5
Netherlands Europe 5
Spain Europe 5
Austria Europe 4
Italy Europe 4
Japan Asia 4
South Korea Asia 3
Switzerland Europe 3
Australia Oceania 2
Belgium Europe 2
Czech Republic Europe 2
Denmark Europe 2
Malawi Africa 2
Mexico South America 2
Nigeria Africa 2
Russia Europe 2
Rwanda Africa 2
Singapore Asia 2
Tanzania Africa 2
Uganda Africa 2
Angola Africa 1
Argentina South America 1
Benin Africa 1
Brazil South America 1
Burkina Faso Africa 1
Cameroon Africa 1
Côte d’Ivoire Africa 1
Democratic Republic of Congo Africa 1
Ethiopia Africa 1
Ghana Africa 1
Greece Europe 1
Guinea Africa 1
India Asia 1
Kenya Africa 1
Lesotho Africa 1
Luxembourg Europe 1
Mali Africa 1
Mozambique Africa 1
New Zealand Oceania 1
Romania Europe 1
Senegal Africa 1
Sierra Leone Africa 1
South Africa Africa 1
Sweden Europe 1
Thailand Asia 1
Togo Africa 1
Turkey Europe 1
Ukraine Europe 1
Vietnam Asia 1

available. Weaker criteria of reproducibility, specific to machine learning methods, were also considered: whether the
hyperparameters, data splits (training/validation/test) and ML software were specified, as well as useful information
such as training and/or inference times and hardware specifications. The latter two are not strictly necessary for
reproduction, but are very useful to budget a deep learning experiment.
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Table 3. Disclosure/availability of each reproducibility criterion, as a percentage of works to which the criterion applies.

Reproducibility criterion Relevant works Fully disclosed (%) Partially disclosed (%) Undisclosed (%)

Code 88 13.6 8.0 78.4
Custom data 74 14.6 4.4 81.1
Trained model 78 5.1 3.8 91.0
Hyperparameters 78 39.7 21.8 38.5
Data split 78 79.5 6.4 14.1
ML software used 82 65.9 N/A 34.1
Training/inference time 82 20.7 6.1 73.2
Hardware 88 36.4 N/A 63.6

Table 4. Occurrence of each evaluation metric.

Evaluation metric Task Occurrence

Accuracy Classification 46
Confusion Classification 19
F1 Classification 18
Recall Classification 15
Precision Classification 17
Kappa Classification 4
ROC Classification 3
Error rate Classification 3
R2 Regression 7
MSE Regression 5
Average Precision Detection 5
Kendall’s Rank Correlation Ranking 2

The reproducibility criteria are shown in Table 3. Each criterion is shown as a percentage of relevant works. For
instance, all works rely on code, so there are 88 relevant works for “Code” and “Hardware”, but 6 do not use machine
learning [58, 66, 82, 90, 98, 111], so there are only 82 for “ML software used” and “Training/inference time”. The first
three criteria (“Code”, “Custom data”, “Trained model”) are counted as “Fully disclosed” if the artefacts are either directly
available online, available upon request, or can be recovered by running a script (for “Custom data”).

The results presented in Table 3 are stark: 78% of works are published without any code, 91% without trained models
(for those that train their own), and 81% of custom datasets are unavailable (including data that used to be available
online but has not been maintained). The picture is slightly brighter for ML implementation details: 40% of works
provide a full list of hyperparameter values, 80% provide their data splitting strategy (training/validation/test, k-fold
cross-validation, or a mixture of both), and 66% disclose which software or framework was used. (It is worth noting,
however, that the exact version of the software is seldom mentioned, which is problematic when the hyperparameters
are said to be left to “default values”.) Training/inference times and hardware specifications are also rarely mentioned.

The comparability of the works was assessed in terms of the diversity of evaluation metrics used for the same type
of task. Table 4 shows the number of occurrences of each metric that appeared in more than one paper. For brevity,
similar metrics were gathered under the same umbrella term: accuracy, for instance, can be averaged over classes, over
random splits, over time, or computed directly over the whole testing set. Similarly in terms of tasks, “Classification”
refers to both image classification and semantic segmentation, which means that some metrics can be averaged over
images or pixels. Nonetheless, Table 4 already shows quite a wide diversity of metrics for classification, whereas image
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regression, object detection and image ranking appear to have more consistent metrics. Moreover, many papers use
arbitrary combinations of these metrics, rarely justifying why some metrics might be more appropriate than others.
It is also notable that only 7 papers provide some measure of standard deviation or variance for their metrics, even
though the diversity of ways to compute the mean might prevent comparisons anyway.

4 DISCUSSION

4.1 Research trends

There is an extensive application of machine learning to the analysis of architectural features in computer science
literature. Two significant ways in which recent studies engage with architectural questions and problems can be
identified. The first optimises algorithmic methods of image analysis by applying them to image data of architectural
or urban environments. This uses both existing and custom-made image recognition models. The primary objective
of this research is to improve process expediency [76], optimise processing tasks, or enhance accuracy [18, 48]. Once
automated, the virtual scene understanding is then deployed in space navigation and virtual visual servoing [96]. The
contribution of this kind of research is automating work that is otherwise labour-intensive, therefore enabling it to be
undertaken faster and at a greater scale and frequency. The shortfall of efficiency-oriented research is that architectural
objectives lack sufficient accuracy, and their focus is high-level, which can make the results prone to bias.

The second type of research applies existing or custom-made machine learning systems to the analysis of data useful
to answering questions arising in the architectural domain, such as a correlation between streetscape aesthetics [82],
poverty levels [47] or visual indicators of architectural styles [24, 33, 61, 75, 85, 86, 102]. This includes the qualitative
analysis of visual clues and perceived attributes that, for example, might indicate urban gentrification [45] or specific
urban environmental conditions [25, 73, 82]. But it also includes the quantitative analysis of buildings and their
elements [23], and is sometimes combined with statistical data. Machine learning provides thereby new methods of
analysis that can lead to novel understandings of the built environment and related data.

The emerging research in the architectural application and computer vision methods is exploratory, and no single
dominant interdisciplinary practice strain has yet emerged. This results in a lack of standardised evaluation methods
as there are limited or isolated application examples. There is, however, an opportunity to further explore research
objectives concerning both problem areas by applying a more collaborative approach between the two disciplines.

4.2 The importance of datasets

Image and hybrid datasets play a key role in the training and testing of computer vision models. Images of buildings are
studied from different viewpoints and at different scales, such as street level and elevational or satellite and aerial views,
and have a wide range of sources: new photographs, ready-made datasets (with various levels of access and permitted
use), scraped data from websites, or collected through more or less public APIs (such as GSV panoramas). Almost none
of the reviewed records used the same dataset and data preprocessing and curation needs vary greatly. Moreover, very
few of these custom datasets are available online, which may be in part due to the unclear legal ramifications it entails
(copyright law, breach of End User Licence Agreement, etc.).

There are thus challenges surrounding data acquisition and annotation. Crowdsourcing, for instance, can be unreliable:
a level of expertise is required to label and class some images, for example, in an architectural dataset [100]. Additionally,
data that seems homogeneousmight in fact cover different categories. For example, Chu and Tsai [16] classify architecture
according to Gothic, Georgian, Korean, and Islamic styles – while Gothic and Georgian refer to specific art-historical
Manuscript submitted to ACM
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styles and periods, Korean and Islamic are much broader. More generally, the positionality of the annotators is almost
never questioned, even though it might affect qualitative evaluations, such as the definition of “formal” versus “informal”
settlements [44], or the collection of “ugly” rooms online [81].

Current research shows that architectural image datasets are predominantly utilised in computer science studies that
focus on computational issues of image analysis and processing and a single database or building scale. From a built
environment perspective, however, there is greater value in emphasising urban and architectural analysis. But this
requires overcoming the current limitation of image datasets that lack context and metadata to enable interoperability
with other data sources (e.g., statistical surveys).

4.3 Pitfalls of computer vision in architectural analysis

The lack of reproducibility and comparability described in Section 3.5 supports the argument that current research at the
intersection of computer vision and architecture is still very exploratory and has not yet focused on making incremental
improvements to previous results. While it has been shown that available datasets are lacking from an architectural
point of view, the computer vision side could also be improved by providing more transparent implementations and
principled evaluation methods. There are additional pitfalls, however, that are particularly prevalent when attempting
to tackle architectural issues with a computer vision-based approach. This section describes the three main pitfalls and
attempts to provide tips to avoid them.

The first pitfall is ambiguous training data, which is mentioned in 11 of the works that use image classification.
Architecture is rife with typologies and classifications (housing type, use class, style, etc.) involving complex definitions
and edge cases that attempt to capture the diversity of the built environment. Architectural styles, for instance, are
difficult to define precisely [102], involve a variety of visual and structural cues, can be mixed together, undergo revivals,
and present significant variation across buildings of different use classes. The first step to address this issue is to ensure
that the samples are correctly labelled (notably in the case of crowdsourced data). Second, if the error on the training
step is unexpectedly high, this might be a case of underfitting: the model does not manage to capture the complex visual
relationships that define a class, which might call for a deeper network or a more advanced optimization algorithm.
Third, visual data might simply not be enough to separate the classes unambiguously. In that case, a hybrid dataset
should be considered.

The second pitfall is class imbalance, especially common in semantic segmentation and object detection (mentioned
in 10 works). It typically occurs in urban scene understanding at aerial or satellite scale, where buildings might be
quite small compared to their surroundings, or land use classes might be unevenly distributed. This problem can be
tackled by various strategies, such as minority over-sampling [26], online hard example mining [87], or by modifying
the optimisation using e.g. a focal loss [60].

The last pitfall is view sensitivity, which is typical of street-level analysis. Kim et al. [52] provided a thorough
quantitative analysis of the impact of panorama locations on attributes computed from semantic segmentation. However,
view sensitivity affects all computer vision tasks, due to occlusions, self-occlusions, reflections (for glass buildings) and
distortions (for high buildings in narrow streets). While this problem is still open, potential approaches include using a
trained model to detect and remove occluded views, combining visual and non-visual data, or combining inferences
from different views of the same building.
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Table 5. Current research summary and future directions

Built environment research

Objectives and applications

Analyse visual-spatial characteristics of building and urban elements for their classification
and identification (e.g. styles, typologies, geolocations)
Rationalise spatial qualities or quantities by rating visual indicators (e.g. building valuations,
building conditions, neighbourhood qualities, walkability)
Infer demographic characteristics from visual-spatial analysis (poverty, gentrification).
Understand non-physical (virtual) space and generic typologies

Benefits

Automation of labour-intensive work
Methodological innovation for novel understanding of built environment based on existing data
New insights through transdisciplinary approaches
Leveraging existing datasets

Challenges
Generalisability of findings
Reproducibility and accuracy of processes
Data problems: access, quality, reliability, interoperability, frequency

Future directions

Transdisciplinary approaches to data curation for both qualitative and quantitative visual-spatial
analysis
Interoperability of visual with other data types to understand and rate spatial relationships or
characteristics (e.g. to influence decision-making processes, policy, property value estimation,
building condition survey)
Integration of multiple feature analysis with different built environment scales (e.g. to predict
urban and developmental trends, infer use and occupancy)
Democratisation of building-related data

Machine learning objectives

Test or compare the expediency of classification algorithms
Improve the performance and accuracy of image analysis or ML systems (e.g., image segmentation, object or texture detection,
object extraction)
Test methods to infer information from multiple datasets
Identify methods to exploit existing architectural and urban image data

5 CONCLUSION: CHALLENGES AND DIRECTIONS OF BUILT ENVIRONMENT RESEARCH

While current research adopting computer vision remains largely focused on a single scale and feature per paper, two
areas of applications in built-environment studies and benefits have emerged. The first is the automation of classification
tasks associated with established analog methods of visual analysis in spatial disciplines such as the interpretation
of architectural or urban elements. Machine learning offers hereby the means to perform quantitative or qualitative
analysis at scale and repeatedly, while enabling non-experts to undertake some of the tasks. The second are studies
that result in new insights through methodological innovations that utilise the data processing and analysis offered
by machine learning to raise novel questions in architectural and urban studies. As discussed in this paper, Table 5
summarises current research trends and potential future directions.

Future research with built environment applications require a more multiscalar and transdisciplinary approach.
For example, automating existing visual survey methods using computer vision can only make labour-intensive tasks
more affordable and optimise data analysis when the visual-spatial criteria are clearly defined and the data is reliable.
Research focused on computer vision problems does not become relevant to built environment studies unless forming
part of a larger research process and question.
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Some of the future challenges particularly arise around data. Differences in data specification, accuracy, interoperabil-
ity, creation, and access need to be resolved to create comparable and integrated datasets. Existing image datasets tend
to lack context and metadata beyond GPS coordinates and crowd-sourced labels. In the few cases where metadata is
available, the accuracy and reliability of such data was insufficiently tested. For instance, GPS coordinates of street-view
panoramas may be too inaccurate for some applications and crowd-sourced data (such as Open Street Maps or Flickr) is
prone to human errors or outdated. Thus resolving data-related problems is especially important when automating the
collection of large amounts of data, whether once or at regular intervals, which in the past was highly labour intensive.
A more collaborative approach to data curation is also needed to ensure label accuracy.

Another key challenge is the reproducibility and comparability of computer vision-driven architectural research.
While many works so far have been exploratory, future research is likely to seek to confirm current results and improve
the state of the art. This requires more transparency in terms of both implementation and dataset availability, as well as
the definition of a shared evaluation framework that speaks to both computer scientists and architects while staying
connected to real-world applications.

A promising direction for future research is the integration of visual and non-visual data sources. Research might
consider both building elements and context and combine image sources (aerial and street views) and other data such as
statistical information (e.g. census data, household size, property type information, building age, and socio-economic or
environmental statistics). The use of visual indicators in conjunction with existing building-related data has significant
potential to create new transdisciplinary approaches, improving upon traditionally analog methods of analysis in
architecture. This can in turn inform design decisions, building maintenance, real estate evaluation, and planning or
socio-economic policies. It is also of value to the analysis of transformations in the built environment and building
fabric as well as integrating quantitative data and qualitative research.

Emerging methodologies that use hybrid data to enable novel research enquiries are a particularly interesting area
for future research. Although recent studies still predominantly focus on the efficiency and accuracy of computer
vision processes, applications are increasingly concerned with concrete issues such as assessing the characteristics
and qualities of the built environment. In particular, qualitative analysis in transdisciplinary research offers great
opportunities, as integrating qualitative data and its assessment with machine learning approaches provide a means to
ask new research questions and create novel insights.

Establishing multiple connections between visual indicators and architectural properties is useful for design-related
decisions, processes, and outcomes. Elements of the built environment can be located and identified in vastly different
ways across geographic information systems and administrations. While this review excluded research using mainly
generative machine learning models, non-visual data, or 3D datasets, these should be considered in the future when
comparing research trends and their value to built environment studies.

To support a growing interest in transdisciplinary research into built environment questions and challenges, reliable
architectural classification and preparation of datasets is essential, as is the collaboration between architects and
computer scientists to create new data and research approaches. Now more than ever, interdisciplinarity requires
interoperability.
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