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Abstract— Recyclable waste management, which includes 

sorting as a key process, is a crucial component of maintaining a 
sustainable ecosystem. The use of robots in sorting could 
significantly facilitate the production of secondary raw materials 
from waste in the sense of a recycling economy.  However, due 
to the complex and heterogeneous types of the recyclable items, 
the conventional robotic gripping end-effectors, which typically 
come with a fixed structure, are unlikely to hold onto the full 
range of items to enable separation and recycling. To this end, a 
trimodal adaptive end-effector is proposed that can be 
integrated with robotic manipulators to improve their gripping 
versatility. The end-effector can deploy effective modes of 
gripping to different objects in response to their size and 
porosity via gripping mechanisms based on Nano Polyurethane 
(PU) adhesive gels, pumpless vacuum suction, and radially 
deployable claws. While the end-effector’s mechanical design 
allows the three gripping modes to be deployed independently or 
in conjunction with one another, this work aims at deploying 
modes that are effective for gripping onto the recyclable item. In 
order to decide on the suitable modes of gripping, a real-time 
vision system is designed to measure the size and porosity of the 
recyclable items and advise on a suitable combination of 
gripping modes to be deployed. Integrated current sensors 
provide an indication of successful gripping and releasing of the 
recyclable items. The results of the experiments confirmed the 
ability of our vision-based approach in identifying suitable 
gripping modes in real-time, the deployment of the relevant 
mechanisms and successful gripping onto a maximum of 84.8% 
(single-mode), 90.9% (dual-mode) and 96.9% (triple-mode) of a 
specified set of recyclable items. 

I. INTRODUCTION 

hile the culture of consumerism is continuing to 
increase waste generation, efficient recycling can 

contribute to a more sustainable environment for us and future 
generations. The first step in recycling of the waste is 
separating them into different elements, a process called 
sorting.  

Industrial robotic manipulators can enable a much faster 
and safer sorting of recyclable items. They are integrated with 
a range of sensors, such as computer vision, enabling them to 
monitor the waste stream and use appropriate artificial 
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intelligence algorithms to identify the waste items, and then 
the robotic manipulator gets hold of them [1]. 

Prominent examples include the Heavy Picker 
(ZenRobotics, Helsinki, Finland) and SELMA (OP Teknik 
AB, Sweden) that use two-finger heavy duty robotic grippers 
and arms, and artificial intelligence, to sort construction and 
demolition waste.  

In MAX-AI AQc (Bulk Handling Systems, Oregon, USA) 
and Machinex SamurAI (Machinex Industries, QC, Canada), 
Deep Learning is used to identify objects, and an arm with 
suction cups is mounted above the conveyor belt which moves 
the identified objects from their position into lateral outlets. 

 

 
 

Fig. 1. Adaptive vision-based trimodal sorting end-effector that can 
autonomously deploy a suitable combination of gripping mechanisms via 
Nano Polyurethane adhesive gels, pumpless vacuum suction, and claws, 
based on the surface structure and size of the recyclable item. 

 

However, these systems suffer from a number of key 
limitations related to the complex and heterogeneous types of 
recyclable items that are often also combined with surface 
contamination. The items coming with different sizes, shapes 
and surface structure cannot be handled using a gripper 
mechanism with fixed structure, e.g., based on suction cups 
or multi-finger grasping tools. In addition, the contamination 
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makes them hard to recognize via deep learning algorithms 
that rely on restricted datasets. 

In order for a robotic manipulator to successfully handle 
this job, it should be integrated with a versatile and adaptable 
gripping mechanism that can enable attachment to a variety 
of surface structures, shapes and sizes of the recyclable waste 
items. 

Innovative multi-modal gripping systems could be 
adopted to provide a solution to the gripping versatility issues. 
Learning from nature, a number of researchers have 
developed dual-mode grippers using vacuum suction cups and 
parallel jaws where only one mode of gripping can be 
activated at a time [2-4], and the two modes can be activated 
simultaneously to reinforce one another’s effect [5]. 
However, the above dual-mode grippers are unable to hold 
objects such as porous objects larger than the opening of the 
gripper. 

Modes of attachment such as spines, hooks, and claws are 
uncommon in gripping systems used for object manipulation, 
as their sharp edges can damage the objects, while they are 
popular for use in robotic anchoring mechanisms to porous 
surfaces [6-8]. However, in the case of a gripper for sorting 
recyclable waste items, the use of a claw mechanism can be 
very beneficial enabling gripping onto a wider range of 
objects, while potential damages to waste items are not 
concerning.  

As such robotic systems should operate over long 
durations of time to sort large volumes of recyclable items, 
energy efficiency is an important design parameter. Hence, 
while the combinational activation of different modes of 
gripping can be beneficial, a gripping mode should be 
activated only if it is expected to be effective for gripping onto 
a specified recyclable item. For example, vacuum suction 
should not be deployed for gripping onto an object with a 
porous surface, as this approach is ineffective and wasteful in 
terms of energy management [6]. 

Deciding on suitable modes of gripping is another 
challenge in multi-modal grippers that depend on the features 
of the recyclable item. Many recent studies on object 
detection and feature extraction used for gripping have relied 
on deep learning algorithms. Faster RCNN [8], Mask RCNN 
[9], YoloV3 [10], and SSD [11] are some of the relatively 
fast-response deep learning algorithms used for this purpose.  

While the use of deep learning approaches has 
demonstrated some advantages in object detection, including 
in sorting processes [12], the cross-contamination between 
recyclable waste items can confuse the detection process. In 
addition, using very large databases has significant negative 
impacts on the processing speed and makes the process 
slower. Therefore, the use of fast vision-based approaches 
that are not based on deep learning is considered in this study. 

The contributions of this paper include creating a 
trimodal gripping system for waste sorting integrating three 
mechanisms based on Nano Polyurethane adhesive gels, 
pumpless vacuum suction, and radially deployable claws that 
can be independently activated. In order to decide on the 
suitable modes of gripping, a real-time vision system, based 
on an improved contour detection algorithm, is designed to 
measure the recyclable item’s features and advise on a 

suitable combination of gripping modes to be deployed. Our 
approach works based on detecting the size and porosity of 
the recyclable item instead of identifying the item, which 
makes the decision-making process faster. 

The remainder of this paper is organized as follows. In 
Section II, our approach to the development of the trimodal 
gripping hardware is described. In Section III, the 
autonomous vision-based decision-making algorithm 
developed in this study is explained. The experimental testing 
of the gripping system and respective results constitute 
Section IV. The conclusions and future works are presented 
in Section V. 

II. TRIMODAL GRIPPING END-EFFECTOR MODULE 

HARDWARE 

The claws, Nano PU adhesive, and vacuum suction 
mechanisms are combined into a trimodal gripping module, 
Fig. 1. The claws mechanism is used to grip onto the porous 
surfaces or act as sharp fingertips to hold the recyclable items 
by using their edges, the vacuum suction mechanism is used 
to attach to non-porous and smooth surfaces, and the Nano PU 
adhesive mechanism is used to attach to smooth porous or 
non-porous surfaces. Each gripping mechanism can work 
independently, but they can also reinforce each other in 
gripping and holding the object, if necessary. 

In our experimental setup, the payload of the trimodal 
gripping module is restricted by the payload of the Franka 
Emika Panda robotic manipulator on which the gripping 
module is installed. The robotic manipulator has a payload of 
3 kg from which 0.84 kg is occupied by the weight of the 
gripping module. Therefore, the maximum weight of each 
recyclable item cannot exceed 2.16 kg to satisfy the 
manipulator’s payload limits.  

A. Claws Mechanism 
The claws mechanism, which is made via modifying 

standard fishing hooks, enables not only gripping onto porous 
objects, as reported in our previous work [6][8], but also 
acting as sharp fingertips to hold thin non-porous objects 
(recyclable items) from their edges, when the claws are 
arranged around the periphery of the recyclable item, Fig. 2a. 
This mode can particularly reinforce the other two modes 
when they are used in combination.   

 
Fig. 2. The claws mechanism: (a) the structure of a claw unit integrating five 
modified fishing hooks, (b) the motion of claw units are coupled with a 
sliding ring actuated by two DC encoder motors.
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Six claw units are used in our trimodal end-effector, as 
shown in Fig. 2, with five modified fishing hooks integrated 
into each of them. Note that fishing hooks are originally 
designed to be bent, making them difficult to remove once 
engaged. As a result, we modified them to make detachment 
easier [6]. The motion of all claw units is coupled with a 
sliding ring which is actuated via two DC encoder motors 
running at 500 rounds per minute (rpm), Fig. 2b. The claw 
units, sliding ring, and linkages are fabricated using OnyxÔ 
materials via a Mark 2 3D printing machine, Markforged, 
USA.  

B. Pumpless Vacuum Suction Mechanism   
The vacuum suction gripping mechanism [13] consists of 

eight vacuum suction cups (ESS-10-BS, Festo Ltd., 
Germany) and a custom valve mechanism built within the 
cup. Each of the four vacuum suction cups is integrated within 
a hollow semicircular housing filled with super-soft silicone 
rubber (Mold Max™ 14NV, Smooth-On, USA), as shown in 
Fig. 3a. DC-encoder motors are used to move the housings 
that the suction cups are installed on. Each housing is paired 
with a push-plate that integrates six valve plugs. The valve 
plugs are used to block and seal the suction cup inlet when the 
cup is compressed.  

Fig. 3. Pumpless vacuum suction: (a) the semicircular housing integrating 
four suction cups, (b) the housing is filled with Mold Max™ 14NV silicone 
rubber materials, (c) the push-plate integrating suction cup inlet plugs. Note 
that by filling the hollow structure of the housing with silicone materials and 
allowing a 1mm gap between the cup’s inlet and the plug, a faster sealing is 
achieved. 

 
 

Fig. 4. The structure of the Nano PU adhesive gel mechanism. Note that 
releasing is enabled by moving the adhesive away from the item’s surface 
into a confined space inside the end-effector. 

C. Nano PU Adhesive Mechanism 
Nano PU adhesive gels is used as an adhesive mechanism, 

as described in Fig. 4. Two encoder motors are utilized to 
press the adhesive against the surface of the recyclable item 
to enable attachment. To release the item, the same set of 
motors move the adhesive away from the item’s surface into 
a confined space inside the end-effector where the item cannot 
enter, as described in Fig. 4. 

 

 
(a) Vacuum suction mechanism. 

 
(b) Claws mechanism. 

 
(c) Nano PU adhesive mechanism.  

Fig 5. The current consumption profile of end-effector motors during 
gripping via different mechanisms. 

D. The module’s electronics and processing unit 
The module's electronics and processing unit is responsible 

for processing images from the contact surface, making 
decisions about suitable modes of gripping to deploy, and 
providing relevant control signals for motor drivers. The main 
control board used in this study is NVIDIA® Jetson Xavier 
NX™, while the motor driver and encoders are controlled by 
an Arduino Uno. The processing unit is linked to an 
endoscopic camera that provides visual information from the 
contact surface. The object size and porosity determination 
and autonomous decision-making algorithms are run on the 
main control board, which sends commands to the interface 
board for the deployment of appropriate gripping modes.  
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The three gripping mechanisms are deployed using DC 
encoder motors, with the relevant motor encoder signals being 
fed back to the Arduino Uno to stop the motors after each 
mechanism is fully deployed. Furthermore, the feedback from 
the motors' encoders is used to determine the gripping end-
effector’s displacement. Also the feedback from current 
sensors (ACS712) is used to determine whether a gripping 
mode is fully deployed or not. Fig. 5 shows the output of the 
current sensors connected to each of the encoder motors in 
use.  

In Fig. 5, A, C indicate the changes in current during no-
load deployment of each mechanism before gripping and after 
releasing the recyclable item. This value is measured to be 
between 0.019 A to 0.25 A. After gripping onto the item the 
motors are turned off and this state is indicated as B where the 
measured current is zero, Fig. 5. 

The parameter T in Fig. 5c presents the changes of current 
before the recyclable item, which is gripped by Nano PU 
adhesive mechanism, collides with the end-effector’s body; 
after the collision, the current will be increased until the 
recyclable item is released from the gripping mechanism. 
Moreover, 𝑃" and 𝑃# are the maximum current when the 
gripping mechanism holds the item and begins to release it, 
respectively, Fig. 5b and 5c. In the case of the pumpless 
vacuum suction mechanism, 𝑃# does not exist since during the 
releasing process there is no external load applied from the 
item on the gripping mechanism, Fig. 5a. According to our 
test results, the maximum measured values of 𝑃" are 0.061 A 
(Nano PU adhesive), 0.073 A (vacuum suction), and 0.186 A 
(claws) mechanisms. These values are used to send a stop 
command to the system and mark the end of the gripping 
operation. 

 
Fig. 6. The configuration of the experimental setup for vision-based decision 
making on suitable modes of gripping to a specific recyclable item. 
 

 
Fig 7. The outputs of Algorithms 1 (contour detection and scaling) and 
Algorithm 2 (hole detection and scaling) are fed to Algorithm 3 to decide on 
suitable modes of gripping. 

III. VISION-BASED AUTONOMOUS DECISION-MAKING 

The key stages in the implementation of our vision-based 
detection system to identify features of the recyclable items 
are as follows: (1) detecting the reference object (O&'(), (2) 
calculating the pixel size of the reference object in 
millimeters, (3) detecting the object to be gripped O), (4) 
calculating the size of O), (5) extracting the features of O) 
(size and porosity), and (6) selecting the appropriate gripping 
mode based on the extracted size and porosity of the items. 

A. Object Detection and Size Determination 
As the reference object, a circular orange sticker is placed 

on the left side of the predefined grasping point. The diameter 
of the 𝑂+,- is 50 mm. It is easy to distinguish O&'(	from O)s based 
on its color and location. Fig. 6 shows the position of the reference 
object on the robot workspace, as well as the position of the 
integrated endoscopic camera. The camera is able to capture 30 frames 
in a single second of video with a 70-degree viewing angle, and a 
resolution of 1280×720 pixels.  

The process of detecting O&'( and calculating its pixel size is 
described in Algorithm 1. The main two packages used in this 
algorithm are Numpy and OpenCV(cv2).  The radius of O&'( is 
initialized in the first step, line1, Algorithm 1, Fig. 7a. Then, a 
Gaussian filter is used to smoothen and remove blur from the 
relevant camera frame (f0), [14]. The RGB frame is converted 
to grayscale to remove unnecessary data, resulting in a shorter 
processing time [15]. Moreover, OpenCV's cv2.erode and 
cv2.dilate [16] functions are used to connect the broken parts 
of the detected areas, line 4, Algorithm 1, Fig. 7b. The parameter 
f01 in Algorithm 1 is defined as the refined input image. 
Subsequently, the object's contours (O2), were detected using 
OpenCV's findContours function, line 5, Algorithm 1. Note that  
O&'(		and		O) are the items that will be detected at this step, 
Fig. 7c; if the detected contours’ area are less than the 
predefined minimum value, it will be considered as noise and 
eliminated, line 6-10, Algorithm 1. The n" and n# in Fig. 7b 
present the area that have been neglected in the process of 
contour detection, Fig. 7c. 

The detected contours were then sorted from left to right 
using OpenCV's contour sorting function (contours.sort 
contours). The parameters O&'(6 , O)6  are presented as the 
detected O&'(		and		O) contours, Fig. 7c. As a result, O&'( will 
always be the first item discovered, followed by O). Then the 
OpenCV’s contourArea function is used to calculate the area 
of the detected object’s contour and the number of non-zero 
pixels. The minAreaRect function in OpenCV is used to 
calculate the smallest bounding rectangle that can cover the 
detected contour. The BoxPoints function of OpenCV is 
employed to determine the rotating bounding box, line 11, 
Algorithm 1. 

Finally, by using the pixels_per_metric [17] method the 
actual size of the object will be determined. The parameters 
O&'(6
78  , O)69:;

78  , O&'(69:;
78 	, and 	O)69:;

78 	are non-zero detected 
pixels of O&'(		and		O) , and the minimum rectangular boxes 
of O&'(		and		O)s’ contours that can be covered by them, 
respectively.  
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  In the following, the cv2.moments function of OpenCV 

is used to calculate the center of O)6 , line 1, Algorithm 2. The 
detected contour will be cropped from the original image 
(O)< ), Fig. 7d. Then O)<  will be converted to binary (O)=< ).  In 
order to invert the color of O)=<  we used its opposite shape, 
where all the white pixels inverted to black and vice versa, 
line 4, Algorithm 2. The contour detection process will then 
be used to locate new contours (O)6

< ). The newly identified 
contours are therefore the existing gaps or holes on the 	O) 
and the size of them will be evaluated to eliminate the 
undesirable ones, Fig. 7e. Moreover, the contour which has 
the same size as O)6  will be eliminated. The center of the 
detected contours (O>?@ABCDEBFG

< 	, O>?@ABCDEBIG
< ) will be 

determined in x and y coordinates in the next step. Then, the 
size of them will be calculated, same as lines 12, 13, 14, and 
16 of Algorithm 1. Finally, the distance between the newly 
detected contours and the original image will be calculated to 
determine the size of gaps by using Euclidean function from 
scipy package, ∆K. Note that our vision system is designed for 
processing one isolated item at a time. 

 
B. Autonomous Decision Making  

The major purpose of our autonomous decision-making 
algorithm is to select effective gripping modes, depending on 
the recyclable item's features, in particular size and porosity, 

which will be determined using Algorithm 1 and 2. As shown 
in Fig. 8, the functional zones for each of the three gripping 
modes are ah (claws mechanism), as (suction mechanism), and 
ag (Nano PU mechanism). Algorithm 3 presents the 
autonomous decision-making process. As stated in Algorithm 
3, up to three gripping modes can be activated at a time.  

 
Based on the size of O) and the holes on the surface of the 

recyclable item and the position of them relative to the center 
of O), the suitable modes for autonomous gripping onto the 
item is chosen. If the size of the O)	is less than the size of the 
	aL in mode one, three different scenarios can occur based on 
two conditions: condition 1 and condition 2. In the first 
scenario, all three gripping mechanisms will be deployed if 
the locations on the O)'s surface that come to touch with the 
vacuum suctions cups contain no holes (condition 2), and 
there is no hole larger than the size of the Nano PU adhesive 
deployable head on the O)	 (condition 1), lines 18, Algorithm 
3. If condition 1 is true but condition 2 is false, lines 20, 
Algorithm 3, the second scenario of the first gripping mode, 
the claws and Nano-PU adhesive mechanisms will be 
activated because the size of O)	is smaller than 	aL. In the last 



 
6                                                                         IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2022 
 
scenario of the first gripping mode, if the first and second 
conditions cannot be satisfied, then the only mechanism that 
will be activated is the claws mechanism, lines 22 and 23, 
Algorithm 3. 

 
Fig. 8. Effective gripping zones when different gripping modes are deployed: 
ah (claws mechanism), as (suction mechanism), and ag (Nano PU mechanism). 

 
In the second scenario, the size of  O) is greater than the	aL, 

resulting in the activation of the claws mechanism, line 5, 
Algorithm 3. The second scenario has four distinct modes. 
The conditions for the modes in the second scenario are the 
same as the first scenario. If the first and second conditions 
are met, the vacuum suction and Nano PU adhesive 
mechanisms, lines 27 and 28, Algorithm 3, will be activated. 
In the second mode of the second scenario, if the first 
condition is met but the second is not, only the Nano PU 
adhesive mechanism is activated. The third mode is the 
inverse of the second, with the vacuum suction being the only 
activated mechanism. When none of the gripping mechanisms 
can grip onto the item, the final mode of the second scenario 
occurs. In this case, an alarm is sent to the operator, and the 
system will shut down. In Algorithm 3, lines 31 and 32, when 
the size of O) is within the range of a), the third gripping 
mode which is the Nano PU adhesive mechanism will be 
activated, lines 7 and 8.  

 
Fig. 9. Different deployment scenarios of the gripping mechanisms: (a) none 
of the gripping mechanisms is deployed, (b) claws are deployed, (c) vacuum 
suction is deployed, (d) Nano PU adhesive is deployed, (e) claws and Nano 
PU adhesive are deployed, (f) vacuum suction and claws are deployed, (g) 
vacuum suction and Nano PU adhesive are deployed, (h) all three modes are 
deployed. 

The various opportunities for the deployment of the 
gripping mechanisms is shown in Fig. 9. 

 
(a) 

 

 
(b) 

 

Fig. 10. The set of 33 laboratory recyclable items used for experimental 
testing: (a) graspable and releasable items, and (b) ungraspable (O)MN) and 
unreleasable (O)MO	and	O)MM) items within the set. 

IV. EXPERIMENTAL RESULTS 
 

A total of 33 different recyclable items were selected for 
experimental testing. The items chosen for the testing are 
predominantly recyclable items of our robotics laboratory 
spanning from packaging materials to defective 3D-printed 
and casted parts (including hybrid-material prototypes with 
complex geometries) and damaged prototyping tools. Fig.10 
describes the items’ numbers, sizes, weights and gripping 
mode (G1: Nano PU, G2: vacuum suction, and G3: claws). The 
gripping tests were performed when the recyclable items were 
already put in an ideal gripping posture.  

As the payload of the manipulator is restricted to 3 kg, the 
maximum weight of the recyclable item, that should satisfy 
the limit, is considered as a criterion in the selection of items 
for experimental testing. The claws mechanism was tested 
non-destructively to a maximum proof load of 2.1 kg. The 
maximum payload that the bespoke vacuum suction and Nano 
PU adhesive mechanisms can hold were measured as 1.03 kg 
and 0.70 kg, respectively. 
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TABLE I. Gripping tests’ results in different modes. 

 
  

 
 

Apart from the weight, the size of the recyclable item also 
affects the possibility of gripping via the claws mechanism 
which has a minimum and maximum aperture of 12 cm and 
22 cm, respectively (zone ah in Fig. 8).  

  
(a) 

 
(b) 

 
(c) 

Fig 11. The complete process of vision-based decision making, and pick and 
placing items using (O)NP , all three mechanisms), (O)Q , Nano PU adhesive and 
claws) and (O)OO , Nano PU adhesive and vacuum suction).  

In order to use the vacuum suction and Nano PU 
mechanisms for gripping, the recyclable item should be 
contacted with the relevant mechanisms in zone as and zone 
ag, respectively. 

Three items were identified as ungraspable or unreleasable 
and described in Fig. 10b. Note that the lack of ability to grasp 
or release these items is relevant to the mechanical design of 
the gripping system or payload limits of the robotic 
manipulator rather than the decision-making algorithm. The 
first item is a robot wheel with a weight of 3.5 kg, which is 
too heavy as a payload, the second item is a rubber band that 
can be grasped when it is contacted with the Nano PU 
adhesion mechanism. However, the Nano PU releasing 
mechanism is not able to release it due to the flexibility and 
stretchability of the item. The third object is a metal nut which 
can be grasped if coming in touch with the Nano PU 
mechanism (zone ag in Fig. 8), however it cannot be released 
due to the small size. 

Figure 11 shows the complete pick and place process via 
our vision-based decision-making approach for three different 
recyclable items made from perforated metal and ABS plastic 
(Fig. 11a), plastic and silicone rubber (Fig. 11b), and plastic 
(Fig. 11c).  

In order to evaluate the performance of our trimodal 
gripping module and the complimentary vision-based 
decision-making algorithm, a series of pick and place 
experiments with the set of 33 recyclable items were 
conducted, described in Fig. 12. 

 

 

Fig.12. Demonstration of gripping to a set of irregular items including a water 
bottle (O)NR , Nano PU), a screw driver (O)OS	, Nano	PU), a plier 
(O)OX	, Nano	PU), a cardboard box (	O)N , Nano PU + Vacuum suction), a 
sanitiser container (O)NY , , Nano PU + Vacuum suction + Claws), a ping-pong 
ball (O)OP	, Nano	PU), a modified filament reel (O)Q , Nano PU  + Claws), and 
a paper glue (O)OY	, Nano PU). 

 

    
                      

                   Graspable items 
 

 

 Total 
items 

Nano PU 
adhesive 

Vacuum 
suction 

Claws Nano PU 
adhesive + 
Vacuum 
suction 

Nano PU 
adhesive + 

Claws 

Vacuum 
suction + 

Claws 

Nano PU 
adhesive + 
Vacuum 
suction + 

Claws 

Not 
releasable 

All objects 33 28 
84.84% 

12 
36.36% 

6 
18.18% 

30 
90.90% 

29 
87.87% 

16 
48.48% 

32 
96.96% 

2 
6.6% 
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TABLE I shows the experimental results where different 
gipping mechanisms were deployed individually and in 
combination with one another. In the first set of experiments 
where only one mechanism is deployed the Nano PU adhesive 
mechanism demonstrates the best performance enabling grasp 
of 84.84% of the recyclable items. In the second set of 
experiments two modes of gripping (out of three) were 
activated at a time, where the combination of Nano PU and 
vacuum suction shows the best performance enabling grasp of 
90.90% of the recyclable items. In the third set of experiments 
all three gripping modes where activated at the same time 
enabling grasp of 96.96% of the items. As mentioned earlier, 
among the recyclable items, two items were not releasable due 
to material flexibility (a rubber band) and small size (a metal 
nut).  

V. CONCLUSIONS 
 

A trimodal adaptive end-effector is developed that can be 
integrated with robotic sorting systems to improve their 
gripping versatility. Using a vision-based decision-making 
algorithm, the end-effector can deploy effective modes of 
gripping to different recyclables items in response to their 
surface structures, size and porosity via gripping mechanisms 
based on Nano Polyurethane (PU) adhesives, pumpless 
vacuum suction, and radially deployable claws. The results of 
the experiments confirmed the ability of our vision-based 
approach to identifying suitable gripping modes in real-time, 
deployment and gripping onto a wide range of our laboratory 
recyclable items. The experimental testing was performed on 
33 laboratory recyclable items where one or more gripping 
modes were deployed at a time. When the modes are 
individually deployed using the Nano PU adhesive, vacuum 
suction and claws mechanism, it was possible to grasp 
84.84%, 36.36%, 18.18% of the recyclable items, 
respectively. When two modes of gripping were activated at 
a time, the combination of Nano PU and vacuum suction 
shows the best performance enabling grasp of 90.90% of the 
recyclable items. By activating all three gripping modes at the 
same time it was possible to grasp of 96.96% of the items.  

In the future work, a load cell can be integrated with the 
surface on which the recyclable item is placed, e.g. a 
conveyor belt, to measure the weight of item and 
communicate this information to the gripping module to 
optimize the decision-making process on the activation of 
multiple modes of gripping. Furthermore, future studies 
will consider improvements to the vision system so that it 
can deal with applications in cultured recycling 
environments. This will include the addition of a depth 
camera replacing the scaling reference sticker that may be 
occluded from vision in such environments.  
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