
  

  

Abstract— This paper proposes a novel adaptive anchoring 
module that can be integrated into robots to enhance their 
mobility and manipulation abilities. The module can deploy a 
suitable mode of attachment, via spines or vacuum suction, to 
different contact surfaces in response to the textural properties 
of the surfaces. In order to make a decision on the suitable mode 
of attachment, an original dataset of 100 images of outdoor and 
indoor surfaces was enhanced using a WGAN-GP generating an 
additional 200 synthetic images. The enhanced dataset was then 
used to train a visual surface examination model using Faster R-
CNN. The addition of synthetic images increased the mean 
average precision of the Faster R-CNN model from 81.6% to 
93.9%. We have also conducted a series of load tests to 
characterize the module’s strength of attachments. The results 
of the experiments indicate that the anchoring module can 
withstand an applied detachment force of around 22N and 20N 
when attached using spines and vacuum suction on the ideal 
surfaces, respectively. 

I. INTRODUCTION 

The development of robotic anchoring systems with the 
ability for stable mooring and maintaining attachment while 
transferring across porous and impermeable surfaces is 
invaluable for a wide range of industrial applications. This 
might include attachment by climbing robots for inspection 
and maintenance of buildings including heritage locations, 
power plants and bridges, and disaster zones [1]. 

Anchoring into well-grounded structures is a biological 
approach for locomotion, stiffness control, object 
manipulation, standing against fluid flows and energy 
management in animals [1]. Using claws [2], small-scale 
fibers which can produce adhesion through van der Waals 
forces [3,4], curling around and enclosing [5,6] or providing 
negative pressure [1,7] are some of mechanisms that animals, 
insects or plants use to anchor to their environment. Animals 
as small as insects and as large as bears use spines or claws to 
enable interlocking on to the surfaces when climbing [8], 
where larger animals typically have much blunter claws and 
therefore poorer attachment ability than smaller animals [8,9]. 
A complex structures of multilevel branching fibers with 
specialized tips allow geckos to adhere to almost any surface 
using van der Waals forces, no matter how slippery [9]. Flying 
snakes can anchor their selves by wrapping around tree 
branches [10]. Similarly, tendrils are used by climbing plants, 
e.g. cucumber, for support and attachment, generally by 
twining around suitable hosts [6,11]. Octopus arms are 
equipped with one or two rows of suckers that are controlled 
independently and can enable multiple functionalities 
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including anchoring the body to hard substrates by which 
standing against storm surge and waves [1].  

 
 

Figure 1. Adaptive vision-based dual-mode anchoring module that can 
deploy a suitable mode of attachment (spines or vacuum suction) in response 
to variations in textural properties of the contact surface. Here, the module is 
attached to a non-living piece of a tree. 

 

Some animals exploit a combination of different 
mechanisms to attach to the environments. For example, 
cockroaches can climb an impressive range of materials by 
using their claws in conjunction with sticky metatarsal pads 
[8]. Frogs can land and stick on leaves with wet adhesion 
using peg-like projections and adhesive pads [10]. The 
tapeworm Taenia Solium (parasite of the human gut) uses four 
suckers around the head to approach the gut wall and a set of 
hooks to fix onto it [12].  

There has been a considerable attention in the literature to 
the link between the size and weight of animals and their 
methods and strategies for anchoring to the environment. 
While smaller insects typically use a combination of spines 
and adhesive pads for attachment on vertical surfaces, larger 
animals such as octopus and birds predominantly use suction 
mechanisms and claws for attachment, respectively [10, 13].  

A number of researchers have developed attachment 
devices based on claws, spines, and suction mechanisms. 
These include, for example, an omni-directional anchoring 
foot mechanism based on microspines, hierarchical arrays of 
claws with suspension flexures, that can tolerate forces as 
large as 100 N on natural rock surfaces [14]. In [15] an array 
of independently compliant rotary microspines on a wheel 
structure was developed that enables the robots to climb rough 
vertical walls [15].  
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Figure 2. Structure of the dual-mode anchoring module: (a) the configuration 
of the module when spines are deployed, (b) the structure of the valve used 
in vacuum suction mode, (c) the spines’ deployment mechanism, (d,e) side 
and bottom views of the module when none of the attachment modes are 
active, and (f) the anchoring module together with its electronics and 
processing unit. 

 

The versatility of octopus suckers has also inspired the 
development of artificial counterparts of this natural organ. 
This includes the development of artificial suckers actuated 
by negative air pressure [7], positive air pressure [16], shape 
memory alloy [17], and dielectric elastomer actuators [18]. 

There have been some efforts on combining different 
modes of attachment. In [19], a self-aligning gripper based on 
combining gecko-like and electrostatic adhesive mechanisms 
is proposed, where the two modes of attachment complement 
each other; while the gecko-like adhesives can typically 
provide high adhesion force to smooth surfaces with limited 
ability for attachment to rough surfaces, the electrostatic 
adhesives that can enable attachment to a wider range of 
materials at a lower level of adhesion. In [20], a worm-
inspired wall-climbing robot utilizing an anchoring 
mechanism based on the composition of suckers and 
microspines is proposed; their experimental tests on the 

sucker-microspine composite structure shows an increase in 
the frictional resistance on rougher wall surface by about 30% 
compared with the traditional pure suction cup structure. 
These approaches were based on concurrent activation of all 
two modes of attachment aiming at increasing the chance or 
strength of attachment by using a combination. 

However, in many applications, the use of certain modes 
of attachment can be ineffective or even harmful. For 
example, the activation of vacuum pressure-based suction 
cups on porous surfaces can be very inefficient, ineffective, 
and wasteful in terms of the robot’s energy management. 
Similarly, the activation of artificial spines on delicate contact 
surfaces can damage the contact surface. In order to avoid 
this, the attachment system should adapt effective methods to 
attach to different contact surfaces taking into account the 
respective surface properties. This requires different modes of 
attachment to be deployable independent of each other, as 
opposed to their simultaneous deployment [1]. 

Hence, in this paper, we propose a dual-mode anchoring 
module that can switch between vacuum suction and spine 
attachment based on the surface properties of the 
environment, Fig.1. The contributions of this paper can be 
summarized as follows:  

1. Creating an anchoring module with independently 
deployable mechanisms for vacuum suction and spine 
attachment. 

2. Designing a Faster Region-based Convolutional Neural 
Networks (Faster R-CNN) algorithm to detect the surface 
properties of the environment that the robot is interacting 
with, using an integrated Wi-Fi camera, and optimization of 
the relevant code for implementation on an NVIDIA Jetson 
Xavier NX, as the processing unit. This arrangement provides 
the possibility of autonomous decision making on the suitable 
mode of attachment to the environment. 

The contact surfaces studied are mainly those found in 
natural environments including rocks and cliffs, various tree 
trunks and muddy surfaces, in addition to some indoor 
features. For the purpose of training by deep learning 
methods, a rich dataset of fully-textured images was required. 
In order to enhance our dataset of the relevant images, the 
Wasserstein Generative Adversarial Network with Gradient 
Penalty (WGAN-GP) was used to create a synthetic dataset of 
200 images. Subsequently, a Faster R-CNN algorithm was 
used to train the system to enable a fully automated visual 
examination of surface textures.  
The remainder of this paper is organized as follows. In 
Section II, our approach in the development of the dual-mode 
anchoring hardware is described. In Section III, various 
methods of generating synthetic data are studied, and WGAN-
GP was selected for generating additional synthetic images. 
The image pre-processing approach used in this study is also 
explained in this section, and finally, a model for detecting 
textural properties of contact surfaces was created using 
Faster R-CNN. The experimental testing of the anchoring 
module and respective results constitute Section IV. The 
conclusions and future works are presented in Section V. 
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II. DUAL-MODE ANCHORING MODULE HARDWARE 

The dual-mode anchoring module contains two 
attachment mechanisms using spines and vacuum suction, 
Fig. 2. The spines are used to attach to porous surfaces, such 
as resin-bound driveways and certain types of buildings’ 
facades, and the vacuum suction system is used to attach to a 
range of non-porous and smooth surfaces such as the window 
glass. The weight of the module is 0.375 kg, excluding its 
processing unit. In the following, the process of design, 
fabrication, and testing of each attachment mechanism is 
described.  
A. Attachment with Vacuum Suction 

The vacuum suction attachment mechanism is comprised 
of a multi bellows vacuum suction cup, a bespoke valve 
mechanism integrated with the cup, and two motorized sliders 
that enable moving the cup and the valve’s plug 
independently in a perpendicular direction to the surface, as 
shown in Fig. 2. The suction cup used in this study is a 
SBLP50 (VACUFORCE, USA).  

 The valve mechanism is comprised of a rigid plug, a 
washer made of soft silicone rubber (Mold Max 14NV, 
Smooth-On, USA) used for sealing, and a DC-geared motor 
with leadscrew to move the valve’s plug, as described in Fig. 
2a, b. The valve’s plug is used to block the suction cup inlet 
when the cup is compressed. This creates a negative pressure 
inside the cup enabling attachment.  
B. Attachment with Spines 

In order to construct a spine mechanism, we used 
standard fishing hooks (Crivit leader and hook set, size 8). 
Each hook is integrated with a retraction mechanism (a spine 
holder and a compression spring) forming a retractable spine. 
Every two retractable spines are then integrated into a toe-like 
housing connected to the anchoring modules external body 
using a rigid link at the top and a soft link at the bottom, as 
presented in Fig. 2a, c. The toe-like housing structure, 
retraction mechanism, and sliders are fabricated using Onyx 
materials via a Mark 2 3D printing machine, Markforged, 
USA. The use of a soft link in the construction of the spine 
deployment mechanism enables the elastic deployment of the 
spines over the contact surface leading to better engagement 
between the spines and dips and bumps of the contact surface. 
Hence, a soft link was fabricated from Ecoflex 00-30 super-
soft silicone rubber, Smooth-On, USA, as shown in Fig. 2c. 

 

 
 

Figure 3. The stress analysis of the soft link indicating that the link will not 
fail under a tensile force of up to 5N. 

 

As the anchoring module should be able to hold a load of 
up to 30N and we have six toe-like housing for spines, each 
soft link should be able to hold up to 5N. In order to evaluate 

the effectiveness of the proposed soft links a finite element 
(FE) model of the link was produced in SolidWorks® 
Simulation. The Young module and Poisson ratio of Ecoflex 
00-30 used in the construction of the link are 170 Pa and 0.49, 
respectively [21-22]. Figure 3 shows the stress analysis of the 
soft link, indicating that under a maximum load of 5N, the soft 
link is still stable.   

C. The module’s electronics and processing unit 
The electronics and processing unit of the module is in 

charge of the processing of images from the contact surface, 
subsequent decision making on deployment of a suitable 
mode of attachment, and generating relevant control signals 
for motor drivers. As it is shown in Fig. 2f, an NVIDIA Jetson 
Xavier NX is used as the main control board and an Arduino 
Uno works as the interface between the motor drivers and the 
NVIDIA Jetson Xavier NX. 

III. VISUAL EXAMINATION OF SURFACE PROPERTIES TO 
MAKE DECISION ON THE SUITABLE MODE OF ATTACHMENT 

 

In order for the dual-mode anchoring module to deploy 
the suitable mode of attachment, it should be provided with 
textural information of the contact surface. Hence, in this 
study, an algorithm based on Faster R-CNN is designed and 
implemented on an NVIDIA Jetson Xavier NX, within the 
electronics and processing unit of the module. The algorithm 
is designed based on the fit for attachment using spines. This 
arrangement enables answering the question that whether the 
specified region is suitable for attachment using spines; if the 
answer is ‘no’ then the vacuum suction mode is deployed. 
Note that, the main reason for choosing the Faster R-CNN 
algorithm was the ability to run this type of algorithm on 
NVIDIA Jetson Xavier NX with low latency at a high 
precision [23]. The design and implementation process of the 
proposed algorithm can be summarized as follows: 
 

(1) A dataset of 100 images from environments that are 
suitable for attachment via spines is created through 
photography. 
(2) All images within the dataset are labeled and then 
relevant TFRecords files are generated for training a model 
based on the Faster R-CNN algorithm. The mean average 
precision of the trained model was calculated as 81.6%. 

(3) In order to improve the precision of the trained model, 
a WGAN-GP was designed and applied to the preliminary 
dataset to generate new members for the dataset, thereby 
creating a new dataset of 300 images, including the original 
images. The improved mean average precision of the 
trained model with the new dataset was then calculated as 
93.9 %. It should be noted that the calculations were based 
on 1000 training iterations. 

Figure 4 presents eight members of the dataset gathered 
based on the fit for spine attachment. Increasing the number 
of dataset members has a direct effect on the Faster R-CNN’s 
model precision which improves the surface examination 
accuracy. 

 



  

A. Generating Data with WGAN-GP 
 

According to [24], the GAN is structured from two 
networks, a generator network to generate synthetic images 
from an original input dataset, and a discriminator to 
determine the similarity between the produced synthetic 
image and the real ones. A synthetic image can be added to 
the original dataset if the discriminator detects it as a real 
image.  

 

 
 

Figure 4. Example members of the dataset gathered based on the fit for spine 
attachment. 

 

The relation between the generator and discriminator of a 
GAN framework can be presented as a min-max structure as 
follows: 

min
$
max
'

𝔼[log( 𝐷(𝑥))]+𝔼[1 − log(𝐷(𝑥))]             (1) 
                          						𝑥 ∼ 𝑃7                          𝑥 ∼ 𝑃8 

where, 
                     𝑥 = 𝐺 𝑧 ,											𝑧 ∼ 𝑝(𝑧)                         (2)   

In Eq. 1, 𝑃7	and 𝑃8 denote as the original data distribution 
and the synthetic data distribution which are implicitly 
defined by Eq. 2. Moreover, 𝔼 and 𝐷	are defined as the 
expected value and discriminator’s estimation function, 
respectively. The 𝑧	variable in Eq. 2 represents a noise sample 
distribution, which is used as the input of the generator. Note 
that 𝑧 can be sampled from noise distributions such as the 
Gaussian or uniform distributions. However, based on [25], 
[26], and [27], the training of GAN is unstable due to the 
gradient vanishing, if the discriminator is optimally trained. 
In order to solve this issue, in [28], a solution by using Earth-
Mover (also called Wasserstein-1) distance is proposed, 
known as WGAN. By using Kantorovich- Rubinstein duality 
[29], the value function of the WGAN can be obtained as 
follows: 

 

                        min
$
max
'∈?

𝔼[𝐷(𝑥)]	+𝔼[𝐷(𝑥)]             (3) 
                                                              					𝑥 ∼ 𝑃7             𝑥 ∼ 𝑃8 
where 𝑆	is a set of 1-Lipschitz function. According to Eq. 3, 
by using an optimal discriminator, named ‘critic’ in [30], to 
minimize the value function 𝑊(𝑃7, 𝑃8), the generator 
parameter should be minimized. In [30], a method of weights 
clipping of the critic within [−𝑐, 𝑐], where c is the clipping 
parameter, to enforce the Lipschitz constraint on the critic is 
proposed. However, the proposed solution can lead to an 
explosion gradient problem [30]. 

In order to solve the aforementioned problems, in [24], an 
alternative solution, known as WGAN-GP, to enforce the 

Lipschitz constraint by directly constraining critic’s output 
gradient norm in respect of its input is proposed, 
 

                  𝑥7 ∼ 𝑝7, 𝑥8 ∼ 𝑝8	, 𝜖 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚[0,1]              (4) 
 

 
Figure 5. the progress in the synthetic images generation during 16000 
iterations of WGAN-GP. 

 

Based on Eq. 4, a real sample (𝑥7) and a fake samples 
(𝑥8) are randomly taken from the original dataset and the 
generator, respectively. Then a random number between 0 
and 1 is chosen, to define the random samples using the 
following function: 

                        𝑥 = 𝜖𝑥7 + (1 − 𝜀)𝑥8                              (5) 
 

Moreover, based on [24], in order to fulfill the WGAN-
GP conditions, the loss of critic should be transformed to: 

 
𝐿 = −𝔼[𝐷(𝑥)]+𝔼 𝐷 𝑥 + 𝜆𝔼[(| 𝛻𝑥𝐷 𝑥 |R − 1)R]   (6)             
             𝑥 ∼ 𝑃7             𝑥 ∼ 𝑃8           										𝑥 ∼ 𝑃S 
where λ	 and 𝑥 are the gradient penalty coefficient and random 
samples based on 𝑃7 and 𝑃8. The applied WGAN-GP 
algorithm is based on Tensorflow and Keras. The preliminary 
dataset used to generate synthetic images includes 100 images 
with a size of 256x256. The Adam optimizer is applied to the 
WGAN-GP, where its hyper-parameters, α, β, γ, and ε are 
valued as, 0.001, 0, 0.9 and 10TU. The gradient penalty 
coefficient and the number of critic iterations per generator 
iteration are 10 and 5 based on [24], respectively. 
In this study, 200 images were generated using the WGAN-
GP algorithm. Figure 5 illustrates the progress in the synthetic 
generation of images during 16000 iterations. 

B. Labeling & Generating TFRecords 
In order to label the dataset members, the labelImg 

software [31] was used. Using the LabelImg software the 
bounding box and images annotation files were prepared. 
Then, the preliminary labeled dataset was divided into two 
parts: train and test, with a ratio of 80% and 20% in terms of 
the number of members. To store the images as a sequence of 
binary records, they were converted to TFRecord format, 
where the TFRecord is the input of the surface examination 
training system. Following the preparation, the Faster R-CNN 
algorithm is used to train the surface visual examination 
model. 

C. Faster R-CNN 
The designed Faster R-CNN has two main parts, a 

Region Proposal Network (RPN), and a Region Detection 
Network (RDN). The RPN is used for ranking the region 
boxes, which are called anchors. The RPN ranking is based 
on similarity approximation of the environment considered 
for attachment and the trained model by using a classifier and 



  

a regressor. The RPN labels the anchors with higher overlaps 
with the ground truth anchors as foreground, and the other 
ones as background. RDN is used to detect objects. 

The labeled anchors will be fed into the softmax logistic 
regression activation function to detect the labels. Based on 
[32], the RPN loss function can be expressed as: 
 

𝐿 𝑝V , 𝑡V =
1
𝑁YZ[

𝐿YZ[ 𝑝V, 𝑝V∗ + 𝜆
1

𝑁7]8V

𝑝V∗𝐿7]8 𝑡V, 𝑡V∗

V

	(7) 

                                                        
where            

 

𝐿7]8 𝑡V, 𝑡V∗ = 𝑅 𝑡V, 𝑡V∗                                 (8) 
 

 

 
Figure 6.  The structure of our Faster R-CNN algorithm. Note that FC and 
CONV represent Fully Connected and Convolutional layers, respectively. 

 
Figure 7. The improvement of Faster R-CNN’s Mean Average Precision 
(MAP) by adding the 200 synthetic images obtained using WGAN-GP. 

 

In Eq. 7, i denotes an anchor index in a mini-batch, 𝑃V	is 
the possibility for the predicted anchor i to be a suitable region 
for anchoring with spines, and 𝑃V∗	is ground truth which 
should be one if the anchor is “positive” and zero if the anchor 
is “negative”[33]. Moreover, 𝑡V	is a vector containing the 
predicted bounding box with four parameterized coordinates, 
and 𝑡V∗	 is the ground truth box related with a positive anchor, 
and 𝐿YZ[  is the log loss obtained based on the prepared area 
for attachment is detected or not. In Eq. 8, 𝐿7]8 and 𝑅 
represent the regression loss and robust loss functions as 
presented in [34], respectively. In Eq.7, when the anchor 
becomes positive then 𝑃V will be one and the regression will 
be active, vice versa if the value of 𝑃V∗	is zero, the regression 
will be disabled.  

 

 
(e) 

Figure 8. (a) The configuration of the experimental setup to measure 
anchoring strength (load testing). A motorized linear guide was used to move 
various contact surfaces away from the attached anchoring module, while the 
module was mechanically linked to a Nano17 F/T Sensor, (b) anchoring 
module attached to a perforated metal surface using spines for the purpose of 
load testing (top panel), and  anchoring module attached to an acrylic sheet 
using vacuum suction for lead testing (bottom panel), (c) anchoring module 
is attached to the window’s glass using vacuum suction can withstand an 
applied detachment force of around 20N, (d) anchoring module is attached to 
a curved perforated metal surface using spines can withstand an applied 
detachment force of around 22N, (e) visual surface examination output for a 
perforated metal surface, based on the Faster R-CNN model. 
 

Eq. 7 presents the output of the classification and regression 
layers, normalized with 𝑁YZ[ and 𝑁7]8 respectively, and λ is a 
balancing weight. The next step after applying the RPN is to 
reduce the feature map by using the Region of Interest (RoI) 
pooling. The training of the RPN was performed using 
Stochastic Gradient Descent (SGD) for both classification and 
regression at the same time jointly. Figure 6 presents our 
Faster R-CNN algorithm, which is configured based on [33]. 
By adding the obtained 200 synthetic images from WGAN-
GP the training model’s mean average precision was 
increased from 81.6% to 93.9%, based on 1000 training 
iterations, Fig. 7. 



  

IV. ANCHORING STRENGTH: EXPERIMENTAL LOAD TESTING 
AND RESULTS 

In order to characterize the anchoring strength of the module 
in different modes, we have conducted a series of load testing 
experiments using the experimental setup, shown in Fig. 8 
comprising a motorized linear guide with a fixed platform that 
is integrated with a Nano17 F/T Sensor and a moving 
platforms integrated with different types of contact surface 
samples. The module is attached to the contact surface during 
the experiments and is under tensile force, measured by the 
F/T Sensor, as the distance between the moving and fixed 
platform changes, Fig. 8. The experimental results show that 
the module can withstand a pulling force of around 20N and 
22N when anchoring using spines and vacuum suction 
respectively.   

V. CONCLUSIONS 
This paper presents a dual-mode anchoring module that can 
be integrated into robots to enhance their mobility and 
manipulations abilities. The module acquires and processes 
visual information from the contact surfaces in the 
environment and deploys a suitable mode of attachment, spine 
or vacuum suction, depending on the textural properties of the 
contact surface. In order to make a decision on the suitable 
mode of attachment, the original dataset of 100 photos was 
enhanced using a WGAN-GP generating an additional 200 
synthetic photos of potential contact surfaces, and then a 
visual surface examination model was trained using Faster R-
CNN. The use of the enhanced dataset increased the mean 
average precision of the Faster R-CNN model from 81.6% to 
93.9%. We conducted a series of load tests to characterize the 
strength of attachments by the anchoring module. The results 
of the experiments indicate that the anchoring module can 
withstand an applied detachment force of around 22N and 
20N when attached using spines and vacuum suction, 
respectively. 
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