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ABSTRACT

With the increasing scale of offshore wind farm development, main-
taining farms efficiently and safely becomes a necessity. The length
of turbine downtime and the logistics for human technician transfer
make up a significant proportion of the operation and maintenance
(O&M) costs. To reduce such costs, future O&M infrastructures will
increasingly rely on offshore autonomous robotic solutions that are
capable of co-managing wind farms with human operators located
onshore. In particular, unmanned aerial vehicles, autonomous sur-
face vessels and crawling robots are expected to play important
roles not only to bring down costs but also to significantly reduce
the health and safety risks by assisting (or replacing) human opera-
tors in performing the most hazardous tasks. This paper portrays a
visionary view in which heterogeneous robotic assets, underpinned
by Al agent technology, coordinate their behavior to autonomously
inspect, maintain and repair offshore wind farms over long periods
of time and unstable weather conditions. They cooperate with on-
shore human operators, who supervise the mission at a distance,
via the use of shared deliberation techniques. We highlight several
challenging research directions in this context and offer ambitious
ideas to tackle them as well as initial solutions.
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1 INTRODUCTION

Pressured by the need for sources of energy alternative to conven-
tional ones (e.g. fossil fuels), there is an increasing trend of devel-
oping technology that can be used for renewable energy collection.
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Figure 1: Conceptual overview of the system architecture.

One such a trend is the use of turbines, which can be positioned
onshore or offshore, for capturing wind energy. Offshore wind tur-
bines are preferable as their location provides the opportunity to
exploit stronger winds and larger areas for deployment, and mini-
mizes potential conflicts of interests with other aspects of society
(e.g. visual disturbance) [5]. However, the cost of maintaining off-
shore wind farms to allow them to perform at their optimal level
over 25 year of service can be one fourth of the wind turbine in-
stallation costs [14]. A recent report [16] values the global wind
operation and maintenance (O&M) market at $12 billion in 2018
and predicted it would rise to $21 billion by 2025.

O&M involves inspecting components of a wind turbine that
might become faulty and repairing them. Early identification of
faults leads to significant reduction in O&M costs [11]. Inspection
and repair missions on wind turbine blades are typically performed
by rope-access technicians, often working in extreme conditions
and during restricted weather windows. Using this approach, the
length of turbine downtime, and hence lost energy production, is
high, while daily use of crew transfer vessels makes up a significant
proportion of wind farm O&M costs.

Recent advances in the development of robotic platforms and
autonomous systems have opened up new opportunities for deploy-
ing semi/fully autonomous systems for the O&M of offshore wind
farms, with the benefit that health and safety risks associated to
human operators can be removed [17, 18]. One of the best-known
examples of robotic platforms widely used in this area are semi-
autonomous drones launched from boat vessels. Although drones
can be useful to speed up inspection missions, the turbines must be
shut down for the drones to operate reliably, causing loss of revenue
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generation. Moreover, given the non-contact nature of the drones’
modus operandi, they cannot perform nondestructive testing (NDT)
inspection and repair tasks, which are then left to the rope-access
technicians with all the associated risks.

In this paper, we present an intelligent, collaborative, unmanned,
multi-robot platform designed for the autonomous inspection, main-
tenance and repair (IMR) of offshore physical assets, including off-
shore wind farms and oil & gas infrastructures (see Fig. 1). We
envisage an autonomous mothership, equipped with a robotic crew
of drones and crawling robots, sailing to the offshore assets and
carrying out continuous inspection, maintenance and repairing of
them for extended periods of time and under various weather con-
ditions. Being the mothership augmented by an accurate, moving
imaging system, the turbine will be shut down only when mainte-
nance and repairing need to be carried out, considerably reducing
downtime. After an in-depth study of the market, we argue that
no similar integrated, comprehensive robotic solution for offshore
O&M is currently in use worldwide. Its adoption would be a major
step-change in the offshore and oil & gas industries. By leveraging
an heterogeneous team of fully autonomous and intelligent robots,
our system can (1) Remove the need to shut wind turbines down to
carry out blade inspections; (2) Remove the need to send humans
offshore to carry out blade IMR tasks; and (3) Reduce the risk of
using autonomous vehicles offshore to carry out asset IMR tasks.

The most critical building block for a fully autonomous, intel-
ligent system to be deployed in this extreme environment is the
integration of multiple robotic platforms into a single, coordinated
system that is able to carry out the mission robustly as well as
to cooperate with human operators located onshore. We use Al
planning to underpin both the coordination of the platforms and
the communication with the human operators. Those operators
will be removed from dangerous environments, but will remain in
charge of the mission remotely. The planning system will assist
them in making decisions for the optimal use of the assets.

We believe that, if successful, our system will establish the busi-
ness case for using autonomous robots for blade IMR and form the
basis of collaborative remote systems for other relevant industries.

2 OVERVIEW OF MULTI-ROBOT PLATFORM

We now present an overview of the proposed integrated system,
consisting of: (i) an onshore control center; (ii) an autonomous
surface vessel (ASV); (iii) an unmanned aerial system (UAS) with
multiple unmanned aerial vehicles (UAVs); and (iv) a blade IMR
robot composed of a crawler robot and a repair arm manipulator.

2.1 Onshore Control Center

The Onshore Control Center assists human operators in planning,
dispatching and executing the overall mission. The Control Cen-
ter includes: (i) an Al mission planning tool for underpinning the
autonomous behavior of all the robotic assets and their coordina-
tion in performing IMR tasks; and (ii) a Human-Machine-Interface
(HMI), which allows the operator to remotely control the mission.
These two components work together at the service of the operator.

There are two types of missions that the operator can dispatch:
routine inspection missions, which need to take place regularly and
in which the ASV is deployed together with the UAS; and repair
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Figure 2: An example of ASV: Thales Halcyon ASV.

missions, which happen less frequently (only when intervention
is needed) and involve the full crew, i.e. the ASV deploying both
the UAS and the blade IMR robot. The human operator, via the
HMLI, specifies the high-level goals of the mission and leaves the
Al planning system to deal with the details of how to best achieve
them. We use general-purpose planning technology (e.g. the POPF-
TIF system [15]), which we feed with a sophisticated temporal and
metric PDDL [8] domain model representing all the actions that
the different assets can perform and the coordination constraints
between them. Our plan-based approach is very flexible because,
when the mission changes because new assets are added to the
robotic crew or new turbines are added to the farm, we only need
to change the problem file, representing the specific mission, but
not the domain file and the planning algorithm.

After the planning phase and through the HMI, the operator
has the opportunity to review the plan, interrogate the planner on
specific choices and make changes, if needed. Our goal is to develop
a joint, human/robot deliberation system in natural language. We
plan to combine planning with computational argumentation and
natural language dialogue [6, 12]. Once the operator has validated
and authorized the mission, the plan gets dispatched to the different
robotic assets for autonomous execution. A cycle of monitoring,
executing and replanning is implemented to deal with failures due
to environmental conditions and other uncertainty factors. The
operator maintains the ability to intervene via the HMI at any time
during the unfolding of the mission. Data processing happens lo-
cally on the ASV via machine learning techniques and only valuable
data are transmitted back to the operator for inspection. In such a
way, the cognitive load of the operator is kept under control.

2.2 Autonomous Surface Vessel

The ASV acts as a fully autonomous hub for the unmanned trans-
portation of IMR systems to offshore wind farms (see Figure 2).
The hub contains storage and battery charging capabilities for both
the UAS and the blade IMR robot. A stabilized custom imaging
system provides remote visual inspection of the rotating blades,
without the need to shut down the turbine. This is a unique feature
of our system as existing imaging systems require the blades to be
motionless to be able to inspect them. In the initial phases of the
development of our system, the data gathered by the camera are
transmitted to the onshore HMI for visualization and assessment by
a human operator. Once the data has been processed, if a significant
defect is identified, the operator has two options: recall the ASV
to shore whilst a decision is being made regarding the appropri-
ate interventions, or initiate a repair mission. The latter option
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Figure 3: Inspection UAV and deployment UAV.

involves a UAV picking up the blade IMR robot and deploying it on
the stationary turbine blades to carry out maintenance and repairs.
In future developments, we plan to reduce the need for an operator
in the loop for inspection analysis, defect categorization and IMR
decision making, and to transfer these tasks to a machine learning
system that will reside onboard the hub ASV.

2.3 Unmanned Aerial System

The UAS contains a fleet of modular UAVs with reconfigurability
onboard of the ASV. Depending on the task specifications, these
UAVs can be reconfigured into either close-up inspection systems
to examine wind turbine blades or deployment systems to deploy
blade IMR robots on stationary wind turbine blades. As shown in
Figure 3, for close-up inspections, the UAV is equipped with an
imaging system that can record images of moving wind turbine
blades; for repair missions, a gripping mechanism is used to deploy
and retrieve an IMR robot on and from the turbine blade. There are a
number of challenges in the development of the UAS. These include
landing on a moving vessel in a harsh environment, autonomous
navigation around wind turbines, landing safely and securely on
a static but vibrating/oscillating blade without causing damage to
it and locating and safely recovering the blade IMR robot once its
mission is complete.

2.4 Blade IMR Robot

An autonomous crawling robot is deployed onto stationary wind
turbine blades by the UAS to carry out subsurface NDT inspections,
maintenance (e.g. conductivity testing of the lighting protection
system) and repairs (e.g. to remediate cracks, delamination and
leading edge erosion). The robot is able to perform autonomous
navigation to reach the blade section that needs intervention, to
carry an ultrasonic NDT payload and to perform general mariniza-
tion. We plan to furnish the legs of the crawling robot with sensitive
tactile sensors (e-skin) to improve the autonomous navigation over
the blade surfaces. In developing this robot, the focus is on improv-
ing its capacity to carry out unmanned missions, high quality NDT
inspections via a novel thermal imaging payload and blade repairs.

The IMR robot carries a multifunctional, highly articulated arm
that can perform blade leading-edge surface treatments and repairs.
Functionalities include cleaning, resin deposition or spray coating
of damaged areas. The design of the repair arm integrates latest
advances in soft materials, flexible electronics, advanced communi-
cation and manufacturing technologies in the construction process
to fit the operational requirements of extreme offshore environ-
ments. This includes, for example, the ability of the arm to approach
blade cracks from different orientations and to reach critical po-
sitions on the blade to carry out maintenance and repair works.
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Figure 4: An example of crawling robot: BladeBUG robot.

There are a number of key challenges associated with the devel-
opment of soft and flexible arms depending on the technologies
employed for actuation and sensing. The actuation system must
minimize disturbance to the physical placement and operation of
the sensors integrated into the arm. The sensing system, on the
other hand, should receive minimal signal interference from the
rest of the system including electrical noises or magnetic fields.

3 CHALLENGES AND FUTURE RESEARCH

We now reflect on the major challenges posed by the development
of the proposed multi-robotic systems and the research directions
that seem more promising for its successful deployment.

3.1 Flexible and Robust Multi-Agent Autonomy

Autonomous decision making in mission planning and manage-
ment is believed to be one of the most difficult problems to solve
to achieve full autonomy [13]. Constructing a complete mission
plan requires addressing multiple issues such as communication,
coordination and cooperation, task and path (re-)planning, human-
machine interfaces, and domain representation. We use state-of-
the-art, general-purpose Al planners (e.g. [15]), which allow us to
leverage the advancements achieved by a broad scientific commu-
nity. Yet, we face several challenges. We discuss two of them.

The first open problem relates to domain acquisition and repre-
sentation [4, 7, 9]. Formulating the domain knowledge necessary
for an automated planner to produce high-quality plans requires an
accurate domain representation of how the system works both in
nominal conditions and in deviant environmental conditions. This
is particularly difficult in extreme environments as they are charac-
terized by a high level of uncertainty. Inaccurate domain modeling
may lead to the wrong planning problems being solved and, in turn,
to potentially catastrophic disruptions in the operation of robots
in such environments. A general method for the automated refine-
ment of pre-engineered domain models and problem formulation is
necessary for Al planning in real world environments. We propose
to use machine learning techniques to continuously monitor the
discrepancies between the expected and the actual effects produced
by a plan being executed and use these differences to drive the
online refinement of the domain model.

The second challenge concerns robustness in temporal planning,
which augments causal planning with temporal reasoning to han-
dle synchronization and coordination constraints. Although tem-
poral planning is considered essential for supporting real-world



Blue Sky ldea Paper

autonomous decision making, its progress has been slow and lim-
ited to simple scenarios. This is due to two intertwined factors:
a large branching factor, deriving from considering sets of paral-
lel actions, and the difficulty of crafting search control strategies
in algorithms that contain such a high branching factor. Further-
more, temporal planning problems often come with a set of extra
challenges such as required concurrency, timed and periodic state
transitions and uncertainty in the execution time of the actions.
Currently, no single planner can support all the features that are
useful to model real-world problems and, at the same time, exhibit
good performance. More research is required in this field to achieve
robust temporal planning, which is fundamental to intelligent au-
tonomous behavior.

3.2 Explainability

The more robots become autonomous, the less they require human
intervention in their day-to-day tasks, in so releasing human opera-
tors from the burden of constant monitoring. However, cases might
arise when the autonomous system does not meet the expectations
of the operator. For example, in a wind farm inspection scenario, a
UAV might quickly return to the ASV due to an unexpected plum-
meting of its battery capacity. Faced with this unanticipated behav-
ior, the human operator might have troubles in understanding the
behavior of the UAV, which in turn will have a negative impact on
the trust towards it. This problem becomes more excruciating and
the trust even lower when it involves remote robots compared to
co-located robots [2, 10]. Therefore, it emerges as of crucial impor-
tance to equip autonomous systems with the capability to explain
their behavior and the rationale behind it to the human operators.
In extreme environments, where the stakes are high, interaction
between humans and machines must be as fluid as possible and
needs to happen at the cognitive level.

We argue that planning is ideally placed to fulfill the require-
ments of intelligibility and accountability of autonomous systems.
Plans can be seen as ‘certificates’ of an agent’s behavior both before
and after execution. Hence, they can naturally enable collaboration
between operators and robots. Currently, however, they are stored
in the form of impenetrable and immutable low-level scripts, which
makes it difficult to leverage them for explainability. We envisage
that, for plans to become the centerpiece of a smooth exchange
between the humans and robotic system, they need to be appro-
priately combined with other techniques, such as computational
argumentation and natural language dialogue systems. Although
this direction is promising and research on eXplainable Artificial
Intelligence (XAI) has gained significant momentum recently, more
research is needed in goal-driven XAI [1].

3.3 Acceptability

Another issue linked with explainability is the acceptability of
highly autonomous robot systems. Although the goal of remov-
ing humans from extreme environments might seem noble and
uncontroversial, this endeavor frequently meets strong resistance
from the work groups who operate in such environments, not only
because the workers fear to lose their jobs, but because they often
take great pride in performing dangerous and complex tasks under
pressure, as shown in research (e.g. [3]) and as we have experienced
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first hand in the renewable energy domain. Operators become more
willing to be moved to work onshore if they feel that they can retain
ownership of the mission by a close and meaningful collaboration
with the robotics. To this end, we envisage the use of virtual and
augmented reality to create a virtual twin of the wind farm onshore
that the operators can inhabit with the robots.

3.4 Robust Communication

The Onshore Control System losing communication with the ASV
while at sea or with the UAV while in flight could lead to possible
collisions between the robots and offshore energy assets, ditching
of the UAV into the sea, and loss of the ASV at sea. Adding several
layers of safety and mitigation against such a loss of communication
is of paramount importance. For instance, loss of communication
by the UAS must automatically trigger a return-to-ASV automated
procedure. In addition, the UAS will be equipped with a Proprietary
Cellular Safety Solution (CSS), entirely separate from the on board
electronics of the drones. CSS physically captures the UAS within
the safety borders of the farm preventing any possibility of the
UAVs escaping the site perimeter.

3.5 GPS accuracy

GPS based positioning may be at times inaccurate by tens of cen-
timeters leading to potential collisions between the robots and the
offshore energy assets. This may also affect the performance of
the robots for conducting inspections and repairs. To improve both
global and local positioning, we plan to use a real-time kinematics
(RTK) enabled GPS receiver in combination with processing com-
puter vision solution. These technologies should be installed on the
ASV, UAS and the blade IMR robots.

4 CONCLUSION

In this paper, we present our vision to introduce a step-change in
the O&M of offshore wind farms by deploying a fully autonomous
multi-robot platform for the inspection, maintenance and repair of
offshore wind turbine blades. The aim is to significantly reduce the
costs and turbine downtime associated with these tasks and remove
the health and safety risks of relying on rope-access technicians.
In particular, we discuss a multi-robot platform encompassing an
ASV that acts as the hub of an ecosystem of robotic assets such as
UAVs and crawling robots with high-precision manipulators. An
onshore control system based on Al planning technology brings
together all those robots creating a concerted, joint behavior and
maintains the human operators in the loop. Our system is unique
in that it addresses all phases of the O&M of offshore wind farms
autonomously thanks to the use of a tightly coupled system of
heterogeneous robots and Al planning, which supports both the in-
telligent behavior of the robotic platforms and a fluid collaboration
with the human operators in charge of the O&M missions.
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