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Abstract: This paper presents a multi-axis force/torque sensor based on simply-supported beam
and optoelectronic technology. The sensor’s main advantages are: (1) Low power consumption;
(2) low-level noise in comparison with conventional methods of force sensing (e.g., using strain
gauges); (3) the ability to be embedded into different mechanical structures; (4) miniaturisation;
(5) simple manufacture and customisation to fit a wide-range of robot systems; and (6) low-cost
fabrication and assembly of sensor structure. For these reasons, the proposed multi-axis force/torque
sensor can be used in a wide range of application areas including medical robotics, manufacturing,
and areas involving human–robot interaction. This paper shows the application of our concept of
a force/torque sensor to flexible continuum manipulators: A cylindrical MIS (Minimally Invasive
Surgery) robot, and includes its design, fabrication, and evaluation tests.
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1. Introduction

Robotic systems have developed considerably over the last ten years. New advances in actuators
and materials allow the creation of more complex systems capable of conducting more advanced
tasks than previously possible. Force and tactile sensing is one of the key research areas for robot
systems, where such systems are required to characterise their interaction with the environment.
With the ever-increasing demand to create robots that can safely interact with their environment,
especially with humans, the need for robust, low-cost and miniature sensors is increasing too. It is
well recognised that the acquisition of high-quality force and tactile sensor signals during a physical
interaction between, say, a robot hand and an object being manipulated provides the opportunity
to greatly improve the handling and manipulation capability of the robot system. Incorporating
small-sized force/torque sensors in robot hands and arms has been shown to enhance obstacle
avoidance, object grasping, in-hand manipulation and, generally, the meaningful interaction with the
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physical environment [1–3]. Current force measuring sensors show clear shortcomings due to their size,
manufacturability, integration incompatibility, sensitivity, measurement range and/or lack of sufficient
axes of measurement [4–7], with direct force measurements clearly outperforming approaches that use
remote sensors to indirectly measure forces imparted on the robot structure.

The force sensing approach proposed in this paper attempts to provide a solution to this issue
whilst keeping costs low and representing an enabling technology for a wide range of application
areas including medical robotics, manufacturing, and areas involving human–robot interaction. The
main contributions of the presented work are:

• Integration of optoelectronic force sensors in a bespoke mechanical structure for the purpose of
force/torque measurement;

• A concept that lends itself to miniaturisation;
• Simplified manufacturability and customisation to fit a wide-range of robot systems;
• Low-cost fabrication and assembly of sensor structure; and
• Good sensitivity and sensor range for a wide range of manipulation tasks.

A number of advanced robots have appeared recently in the research arena. Examples include
dexterous, flexible snake-like manipulators that can potentially provide high dexterity and mobility
in confined spaces that may not be easily achieved by traditional robotic systems [8–12]. However,
most of these robots lack force-sensing capabilities—An aspect that becomes essential if one wants to
operate a robot in an environment where physical interactions with surrounding objects are the norm.
Hence, such robots cannot exploit their dexterity capabilities to the full, since interactions (collisions)
with the environment remain largely undetected [13–15].

Using force sensors, robot hands can distinguish various kinds of tactile information including
pressure and tangential forces, providing a sense of touch and enabling the equipped hands to perceive
scratching, pricking, rubbing and the recognition of object shapes. The interpretation of the force
sensor signals and, generally, the sense of touch have been extensively researched within the field of
robotics [16–19].

One of the most advanced force/torque sensors is probably the six-axis sensor developed by
DLR (German Aerospace Center) [20,21]. Despite its superior force/torque measurement capabilities,
there are some shortcomings: (a) The sensor’s geometry cannot be easily adapted to a particular
robot structure (because of the Stewart platform, which is the dominant feature of this sensor and
cannot be altered without impacting on the measurement characteristics); (b) the sensor is relatively
complex; and (c) expensive to manufacture (manually attachment of strain gauges on the sensor’s flexor
beams). The superior measurement characteristics of the DLR force/torque sensor are acknowledged.
Our paper is particularly interested in proposing a sensing concept that is low cost and can easily
be integrated with a robotic structure—Hence, we do not see our sensor as a competitor to the DLR
sensor with regards to measurement accuracy and sensitivity.

Another important and widely used force/torque sensor is the ATI Nano17 sensor (ATI Industrial
Automation, Apex, NC, USA)—This sensor is often seen as an industry standard for torque/force
sensors, because of its outstanding sensing capabilities with regards to accuracy, sensitivity and
range [22]. However, the sensor comes in a predefined housing (circular, 17 mm diameter, 14 mm
length) which cannot be modified, and as such is of limited usefulness when further miniaturisation and
adaptation to robot structures are required, although some researchers have succeeded in integrating
these sensors with robot hands for improved interaction sensing. For example, during EU project
HANDLE (Developmental pathway towards autonomy and dexterity in robot in-hand manipulation),
the fingertips of the Shadow Robot Hand were equipped with Nano17 sensors to measure force and
tactile information during robot-object interaction [23]. Good real-time measurements along all six
axes were achievable, but the robot hand’s fingertips needed to be adapted and integrating the Nano17
sensors meant increasing the size of the fingertips; also the comparatively high weight of the sensors
impacted on the fingers’ inertia and required control adjustments. It is also noted that an ATI sensor is
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a relatively expensive item. In this paper, the ATI sensor is used for the calibration and evaluation of
our sensor (see Section 3).

In general, most available force sensors are fabricated without the structure that they will be used
on in mind. This complicates their integration with the intended structure. This becomes particularly
problematic in cases where the robot structure is small, as is often the case with manipulation devices
such as robot hands and robots used for minimally invasive surgery [4,5,24]. In such cases, having
the capability of adapting the sensor geometry to the robot’s structure is essential. In some cases,
there is additionally the need of extending the structural geometry of the robot at the point where
the sensor is to be integrated. A number of robots or, in some cases, their links can be represented by
hollow, cylindrical structures where the inner space is used to feed through auxiliary cables, tubes
and/or tendons. Integrating a “conventional” sensor (which commonly does not provide empty
space internally) is not possibly in such a case without significantly modifying the overall robot
structure [13,14]. Here, our sensor concept excels because it provides the required design freedom to
align the sensor structure with the robot structure. In our chosen example, where the force/torque
sensor is to be integrated with the STIFF-FLOP (STIFFness controllable Flexible and Learn-able
Manipulator for surgical OPerations) arm [25–30], the sensor structure is designed to be ring-shaped
and, thus, easily integrated between robot segments, allowing multiple cables and tubes to be passed
through (Figures 1–3).
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Figure 1. Assembly design for three axis force/torque sensor using three optoelectronic sensors
and three mirrors, optoelectronic sensor, QRE1113, Fairchild Semiconductor Corp. (South Portland,
ME, USA).
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In general, our work aims at creating force/torque sensors that are most suitable for integration
with a range of robot systems, particularly snake-like and highly redundant arms to measure
the interaction of their individual links with the environment and robot hands to measure forces
during grasping and manipulation events. Particular emphasis is on the creation of low-cost, easily
manufacturable and integratable sensors for the real-time measurement of force and torque signals.
With a particular interest in medical robotics, we will demonstrate the integration of our sensor with a
continuum robot (the STIFF-FLOP arm), which is intended for use during minimally invasive surgery.
Having such sensors integrated with these types of robots, we can provide physical interaction
information such as force and tactile perception in surgical environments during an operation.
Having this information readily available, compliant force control can be incorporated and used
to move complex robot structures whilst preventing excessive forces from being applied to the clinical
environment [31,32].

Although there are many methods to measure deformation to calculate external force/torque,
for example by attaching polyvinylidene fluoride (PVDF) films [33], strain gauges [20], piezoresistive
materials [34], or fibre bragg grating (FBG) [21,35] on the sensor structures, we are proposing light
intensity-based measurement using optoelectric technology [36–38] and simply-supported beam
(Figures 1 and 2) [39]. Our proposed methods have advantages such as immunity to electrical noise,
low power consumption, low-level noise, no need for electronic filtering, easy attachment into the
sensor body, and low cost [40–45]. In addition, recent technological advances allow diminutive sized
photo sensor (1.0 × 1.4 × 0.6 mm3) [46]. To calculate force/torque components, optoelectronic sensors
are deployed along the circumference of the sensor structure and can measure three deflections (δ1, δ2

and δ3) (Figures 1, 2 and 4). This simplifies manufacturing, makes the overall sensor size miniaturised,
and secures an ample space in the centre of the sensor structure. This is in contrast with conventional
methods as mentioned above, so it is hard to secure an ample space in the centre of the sensor structure.

Furthermore, today’s 3D printing technologies allow low cost fabrication of miniaturised complex
sensor structures in metal. Hence, the overall size of the sensors can be much smaller than commercially
available force/torque sensors. In this paper, the detailed design and calibration of a proposed
multi-axis force/torque sensor with a ring-like structure and hollow inner section providing ample
space for auxiliary components is presented. Employing the STIFF-FLOP manipulator as an example,
we show how our sensor can be customised to fit a particular robot structure. The sensor is calibrated
and, hence, through an experimental study, we obtain and validate its calibration matrix. This study
also evaluates various properties such as measurement error, repeatability, hysteresis and crosstalk.

2. Design Methods and Fabrication

This section will describe the design requirements, the configuration and the analysis for an
optimized force/torque sensor, specifically for integration with the STIFF-FLOP robot arm design.

2.1. Design Requirements

The design of the force/torque sensor should satisfy the following requirements:

(1) Be capable of measuring forces and moments in a range suitable for the application: In [47–49],
the force applied by robotic surgical systems ranges from 0 to 21 N.

(2) Be miniaturisable: The diameter of sensor structure should be less than 15 mm to be able to pass
through the current commercialized trocars.

(3) Be easily adaptable and integrateable with the given manipulator structure.
(4) Impact on the robot structure as little as possible and provide space for necessary tubes and

cables for other functions such as robot actuation, sensing, and tool actuation.

In this paper, to prove the efficiency of our proposed three-axis force sensor for being integrated
into the STIFF-FLOP manipulator (Diameter: 25 mm, Length: 50 mm, four 1 mm or 2 mm pipes
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are required for one manipulator as shown in Figure 3), we designed the first prototype with the
measurement range and size described in Table 1.Sensors 2016, 16, 1936 5 of 22 
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Table 1. Measurable Range of Force Fz, and Moments Mx and My.

Force and Moment Ranges Sensor Structure Size,
Height H and Diameter D Sensor Structure’s Design Variables

Fz ±7 N
H = 12 mm
D = 24 mm

L = 6 mm, L1x = 9.3 mm, L1y = 5.4 mm,
L2x = 9.3 mm, L2y = 5.4 mm, L3y = 10.8 mm,
h = 1.5 mm, and b = 1.5 mm

Mx ±8.0 N·cm
My ±8.0 N·cm

2.2. Configuration of Optoelectronic Based Force/Torque Sensor

The structure of the optoelectronic force/torque sensor is shown in Figures 1 and 2. The force/
torque sensor uses an optoelectronic sensor, QRE1113 from Fairchild Semiconductor Corp. (Figure 1),
with reflective plastic as a mirror [50]. A flexible ring-like structure made of ABS plastic (Visijet® EX200,
3D Systems Corporation, Rock Hill, SC, USA, a copolymer of Acrylonitrile, Butadiene, and Styrene)
using rapid prototyping (ProjectTM HD-3000 Plus, 3D Systems Corporation, Rock Hill, SC, USA) was
created to measure one force component Fz, and two moment components, Mx and My, as illustrated
in Figure 4. In order to measure the three components of force and moments, the three deflections δ1,
δ2 and δ3 in the sensor structure based on the simply-supported beam need to be measured through
three optoelectronic sensors (Figure 4).
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Each of our individual force sensing elements makes use of a pair of optoelectronics consisting of
a light-emitting diode and a phototransistor. The optoelectronics are appropriately combined with a
reflective surface (mirror) to reflect the light emitted by the light-emitting diode then received by the
phototransistor (Figures 1 and 2). Any variation in distance with regards to the optoelectronics due to
an applied force changes the amount of light reflected onto the phototransistor. The light received by
the phototransistor element is converted into an analogue voltage signal and subsequently converted
into a digital signal for further processing on a computer.

In the event that an external force and moment Fz, Mx and My are applied to the upper plate of
the sensing structure, the three associated beams are deflected. The three corresponding optoelectronic
sensing elements measure the resultant beam deflections (δ1, δ2 and δ3) between the upper plate and
bottom plate (Figure 4). The deflections δ1, δ2 and δ3 can be determined from the read-out output
voltages of the receiving elements of the optoelectronics, i.e., the photo transistors.

In addition, in order to anchor the force sensor to the structure of the STIFF-FLOP arm, 12 screws
are used, as shown in Figures 4 and 5. The hollow structure of our force sensor allows pipes and
electrical wires to pass through. By modifying the shape of the bottom and top connection parts
(purple components), the proposed sensor can be easily adapted to a wide range of robot structures
(Figure 5).
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2.3. Sensor Structure Design, Modelling, Simulation, and Sensor’s Optoelectronic Optimization

To measure the force component and the two moments, the structure of the ring-shaped
force/torque sensor can be simplified to three simply-supported beams arranged within the sensor
structure, with an angular distance of 120◦ between them, as shown in Figures 1 and 6. In the event
that an external force is applied on the upper plate, each of the three simply-supported beams is
deflected. The three photo sensors can measure the amount of deflection δ1, δ2 and δ3, and from the
three deflections, the two moments Mx, My and force Fz can be measured in terms of f 1, f 2 and f 3:

f1 = k1δ1 (1)

f2 = k2δ2 (2)

f3 = k3δ3 (3)
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Exploiting knowledge of the beam material properties, the deflections of the simply-supported
beams are calculated and spring coefficient k can be obtained [39]:

I =
bh3

12
(4)

δ =
f L3

48EI
(5)

k =
48EI

L3 (6)

where spring coefficient k is modelled as a function of the beam length L/2, the modulus of elasticity E,
the moment of inertia I, the width of beam’s section b, and the beam’s section h as shown in Figure 6a.

In the event that an amount of external force is applied to the upper plate (as shown in Figure 6),
force Fz and moment components Mx and My can be calculated by substituting all of the variables
as follows:

Fz = f1 + f2 + f3 = kδ1 + kδ2 + kδ3 (7)

Mx = F·l·sinθ = −L1y· f1 − L2y· f2 + L3y· f3 (8)

My = F·l·cosθ = −L1x· f1 + L2x· f2 (9)

The deflections of the three simply-supported beams are represented, in turn, by the output
voltages (v1, v2 and v3) of the three optoelectronic sensing elements, as follows:

f1 = kδ1 = m1v1 (10)

f2 = kδ2 = m2v2 (11)

f3 = kδ3 = m3v3 (12)

where constants m1, m2 and m3 are obtained experimentally. From Equations (10) to (12), the external
force Fz and moment components Mx and My can be calculated by measuring f 1, f 2 and f 3 as shown in
Figure 4 (right). The calibration matrix kv can be obtained as follows:

 Fz

Mx

My

 = kv·v =

 kv11 kv12 kv13

kv21 kv22 kv23

kv31 kv32 kv33


 v1

v2

v3


=

 m1 m2 m3

−m1L1y −m2L2y m3L3y

−m1L1x −m2L2y 0


 v1

v2

v3


(13)
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Figure 6. Sensor structure (section of simply-supported beam) dimension and design variables (L = 6 
mm, L1x = 9.3 mm, L1y = 5.4 mm, L2x = 9.3 mm, L2y = 5.4 mm, L3y = 10.8 mm, h = 1.5 mm, and b = 1.5 mm): 
(a) The top view; (b) The side view. 

Figure 6. Sensor structure (section of simply-supported beam) dimension and design variables
(L = 6 mm, L1x = 9.3 mm, L1y = 5.4 mm, L2x = 9.3 mm, L2y = 5.4 mm, L3y = 10.8 mm, h = 1.5 mm,
and b = 1.5 mm): (a) The top view; (b) The side view.



Sensors 2016, 16, 1936 8 of 22

2.3.1. Optimization of Characteristic Curves on Optoelectronic Sensor

For the development of the three-axis force sensor, first of all, the relationship between deflections
(δ1, δ2 and δ3) and output voltages of the optoelectronic sensors (v1, v2 and v3) need to be obtained.
As shown in Figure 7, the calibration system consists of a linear guide, a sensor base, and a mirror.
The mirror was set at the initial position where the distance between mirror and optoelectronic
sensor was 1 mm, and moved 9 mm backward such that distance d from the optoelectronic sensors
was increased.

The outcome from our experimental study is the characteristic curves relating the output voltages
of the optoelectronics (v1, v2 and v3) to distance d (Figure 8a). For the development of the force/torque
sensor, the following requirements should be satisfied: (1) Small deflections yield large changes
in voltage; (2) linearity. From the characteristic curves shown in the purple area in Figure 8a, the
characteristic curves are fairly linear, but with small voltage changes for small changes in distance.

To obtain large voltage change with respect to small distance changes, an inverting amplifier was
used as shown in Figures 7b and 8b. The output shows linear behaviour in the region highlighted in
purple, with ∆d = 0.3 mm and a 2.5 V voltage change. For this reason, when force Fz and moments Mx

and My are applied to the upper plate as shown in Figures 4 and 6, each of the three beam deflections
should not exceeded δ = ±0.15 mm because the sensor output shows a linear behaviour within the
distance ∆d = 0.3 mm, as shown in Figure 8b. In addition, to measure positive or negative deflection
when force and moment components are applied on the sensor structure, the initial output voltage of
the optoelectronic sensor should be in the middle of the overall voltage range, i.e., here, at d = 1.75 mm
in the purple area of Figure 8b.

2.3.2. Model and Simulation for Sensor Structure

Depending on the desired measurement range of the force and moments, the sensor structure
can be customized by choosing design parameters L, E, I, b and h as depicted in Figure 6 and in
Equations (4)–(6). In this paper, to prove the efficiency of our proposed three-axis force sensor for
the STIFF-FLOP arm, we designed the first prototype with a size and measurement range as shown
in Table 1.

In our simulations, the values associated with the material properties for the 3D-printed beams
as well as the remainder of the sensor structure were set based on the information provided by
the 3D-printer manufacturer (PROJET VisiJet® EX200, 3D Systems Corporation), as follows: tensile
modulus of 1283 MPa, mass density of 1020 kg/m3, and tensile strength of 42.5 MN/m2. In this
simulation, we verified whether the sensor structure based on the three simply-supported beams could
measure a certain range of force and moment components as summarized in Table 1. The simulation of
exertion of force on the sensor structure implies a linear relationship between force and moment values
and the deflections of the three beams (within the measurable ranges: −0.15 < δ < +0.15) (Figures 9
and 10a–c).

The Multiple Linear Regression attempts to model the relationship between two or more
independent variables and a dependent variable, by fitting a linear equation to the observed data [51].
In this implementation, every value of an independent variable (the deflections of the three beam)
is associated with a value of the dependent variables, force Fz and moments Mx and My. Applying
Multiple Linear Regression with independent variables δ1, δ2 and δ3 as shown in Figure 10a–c, the
calibration matrix was calculated for Fz, Mx and My. As shown in Equations (14) and (15), from the
deflections of the three beams δ1, δ2 and δ3, the estimated Fz, Mx and My can be obtained through the
calculated calibration matrix.
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Therefore, the force and moment components were estimated by multiplying the calibration
matrix and the deflections of the three beam as shown in Figure 10d–f) and sensor’s performance
parameters were calculated (accuracy (3%) and crosstalk (0.5%)). Calibration
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 (15)

Sensors 2016, 16, 1936 10 of 22 

 

 

Figure 9. The FEM Simulation (the simulations performed using Solidworks FEM Simulation tool): 
(a) when Fz is applied on the upper plate, the simply-supported beam deflects around δ = 0.05 mm; (b) 
when Fz and Mx are applied on the upper plate, the simply-supported beam deflects around δ = 0.15 
mm; and (c) when Fz and My are applied on the upper plate, the simply-supported beam deflects 
around δ = 0.15 mm.  

Therefore, the force and moment components were estimated by multiplying the calibration 
matrix and the deflections of the three beam as shown in Figure 10d–f) and sensor’s performance 
parameters were calculated (accuracy (3%) and crosstalk (0.5%)).  

൥ݔ݅ݎݐܽܯ݊݋݅ݐܽݎܾ݈݅ܽܥ ൩ ൥ ൩ݏ݊݋݅ݐ݈݂ܿ݁݁ܦ݉ܽ݁ܤ݁݁ݎ݄ܶ = ൥  ൩ (14)ݏݐ݊݁݉݋ܯ݀݊ܽ݁ܿݎ݋ܨ

൥݇ఋଵଵ ݇ఋଵଶ ݇ఋଵଷ݇ఋଶଵ ݇ఋଶଶ ݇ఋଶଷ݇ఋଷଵ ݇ఋଷଶ ݇ఋଷଷ൩ ൥ߜଵߜଶߜଷ൩ = ቎  ௬቏ (15)ܯ௫ܯ௭ܨ

 
(a) (b) 

Figure 10. Cont.



Sensors 2016, 16, 1936 11 of 22

Sensors 2016, 16, 1936 11 of 22 

 

 
(c) (d) 

 
(e) (f) 

Figure 10. The simulation results describing simply-supported beam deflections and sensor’s 
accuracy and crosstalk evaluation: (a) when Fz is applied on the upper plate, the simply-supported 
beam deflects around δ = 0.05 mm (see also Figure 9a); (b) when Force Fz and Moment Mx are applied 
on the upper plate, the simply-supported beam deflects around δ = 0.15 mm as shown (see also Figure 
9b); (c) when Force Fz and Moment My are applied on the upper plate, the simply-supported beam 
deflects around δ = 0.15 mm (see also Figure 9c); (d) when Fz is applied on the upper plate maximum 
error Fz is around 1% and crosstalk Mx and My are less than 0.5% (the sensor accuracy and crosstalk 
simulated by FEM simulation) (see also Figure 9a); (e) similarly when Force Fz and Moment Mx are 
applied on the upper plate, maximum error Mx is around 3% and crosstalk My is less than 0.5% (see 
also Figure 9b); and (f) when Force Fz and Moment My are applied on the upper plate, maximum error 
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Figure 10. The simulation results describing simply-supported beam deflections and sensor’s accuracy
and crosstalk evaluation: (a) when Fz is applied on the upper plate, the simply-supported beam deflects
around δ = 0.05 mm (see also Figure 9a); (b) when Force Fz and Moment Mx are applied on the upper
plate, the simply-supported beam deflects around δ = 0.15 mm as shown (see also Figure 9b); (c) when
Force Fz and Moment My are applied on the upper plate, the simply-supported beam deflects around
δ = 0.15 mm (see also Figure 9c); (d) when Fz is applied on the upper plate maximum error Fz is
around 1% and crosstalk Mx and My are less than 0.5% (the sensor accuracy and crosstalk simulated by
FEM simulation) (see also Figure 9a); (e) similarly when Force Fz and Moment Mx are applied on the
upper plate, maximum error Mx is around 3% and crosstalk My is less than 0.5% (see also Figure 9b);
and (f) when Force Fz and Moment My are applied on the upper plate, maximum error My is around
3% and crosstalk Mx is less than 0.5% (see also Figure 9c).

3. Sensor Calibration

3.1. Setup for Calibration Experiments

Sensor calibration is the process of finding the relationship between a physical value and the
output voltage of the sensor. In our application, the physical values are force and moment components:
Fz, Mx and My. In order to find the relationship between the force and moment components and the
output voltages of the three optoelectronic sensing elements, a calibration device is proposed as shown
in Figures 11 and 12. This device consists of a linear guide, a sensor base, a load fixture and a load
cell (ATI Nano IP65). The force/torque sensor and the load fixture are mounted on the sensor base
(Figures 11 and 12). The sensor base can move along the x-axis and y-axis to investigate the three
following conditions:
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(1) Force Fz along z-axis as depicted 0© (in Figure 12b);
(2) Force Fz and moment Mx or My (denoted as (Fz, Mx) 1© 2© or (Fz, My) 3© 4© (in Figure 12b)); and
(3) Force Fz and both moments Mx and My (denoted as (Fz, Mx, My) 5© 6© 7© 8© (in Figure 12b)) while

an actuator moves along the z-axis as shown in Figures 11 and 12.

Sensors 2016, 16, 1936 12 of 22 

 

(1) Force Fz along z-axis as depicted ⓪ (in Figure 12b);  
(2) Force Fz and moment Mx or My (denoted as (Fz, Mx) ①② or (Fz, My) ③④ (in Figure 12b)); and 
(3) Force Fz and both moments Mx and My (denoted as (Fz, Mx, My) ⑤⑥⑦⑧ (in Figure 12b)) while 

an actuator moves along the z-axis as shown in Figures 11 and 12.  

 
Figure 11. Assembly design of sensor calibration device. 

 
(a) (b) 

Figure 12. Sensor calibration device: it can apply compressive force by a load tip and tensile force by 
a wire, at the numbered points on the load fixture. (a) Sensor calibration device; (b) Detail description 
of the load fixture as shown in Figure 11. 

In these experiments, a tensile force and a moment are applied to find the relationship between 
physical force/moment from the load cell and the output voltages of the three optoelectronic sensing 
elements of our sensor. The moment is calculated by multiplying the tensile force and a distance as 
shown in Figure 12. The experimental results show the sensor structure has large hysteresis due to 
the use of ABS plastic materials (Figure 13) while loading and unloading force and moment values 
are consistent with the simulation results (Figure 10a–c). 

3.2. Calculation of Calibration Matrix by Analytical and Empirical Approaches 

Sensor calibration was carried out using the calibration device, examining these three conditions. 
The results of the calibration are shown in Figure 13: 

• Figure 13a shows the relationship between the output voltages of the three optoelectronic 
sensing elements and Fz.  

• Figure 13b shows the relationship between output voltages of the three optoelectronic sensing 
elements and (Fz, Mx). 

Figure 11. Assembly design of sensor calibration device.

Sensors 2016, 16, 1936 12 of 22 

 

(1) Force Fz along z-axis as depicted ⓪ (in Figure 12b);  
(2) Force Fz and moment Mx or My (denoted as (Fz, Mx) ①② or (Fz, My) ③④ (in Figure 12b)); and 
(3) Force Fz and both moments Mx and My (denoted as (Fz, Mx, My) ⑤⑥⑦⑧ (in Figure 12b)) while 

an actuator moves along the z-axis as shown in Figures 11 and 12.  

 
Figure 11. Assembly design of sensor calibration device. 

 
(a) (b) 

Figure 12. Sensor calibration device: it can apply compressive force by a load tip and tensile force by 
a wire, at the numbered points on the load fixture. (a) Sensor calibration device; (b) Detail description 
of the load fixture as shown in Figure 11. 

In these experiments, a tensile force and a moment are applied to find the relationship between 
physical force/moment from the load cell and the output voltages of the three optoelectronic sensing 
elements of our sensor. The moment is calculated by multiplying the tensile force and a distance as 
shown in Figure 12. The experimental results show the sensor structure has large hysteresis due to 
the use of ABS plastic materials (Figure 13) while loading and unloading force and moment values 
are consistent with the simulation results (Figure 10a–c). 

3.2. Calculation of Calibration Matrix by Analytical and Empirical Approaches 

Sensor calibration was carried out using the calibration device, examining these three conditions. 
The results of the calibration are shown in Figure 13: 

• Figure 13a shows the relationship between the output voltages of the three optoelectronic 
sensing elements and Fz.  

• Figure 13b shows the relationship between output voltages of the three optoelectronic sensing 
elements and (Fz, Mx). 

Figure 12. Sensor calibration device: it can apply compressive force by a load tip and tensile force by a
wire, at the numbered points on the load fixture. (a) Sensor calibration device; (b) Detail description of
the load fixture as shown in Figure 11.

In these experiments, a tensile force and a moment are applied to find the relationship between
physical force/moment from the load cell and the output voltages of the three optoelectronic sensing
elements of our sensor. The moment is calculated by multiplying the tensile force and a distance as
shown in Figure 12. The experimental results show the sensor structure has large hysteresis due to the
use of ABS plastic materials (Figure 13) while loading and unloading force and moment values are
consistent with the simulation results (Figure 10a–c).

3.2. Calculation of Calibration Matrix by Analytical and Empirical Approaches

Sensor calibration was carried out using the calibration device, examining these three conditions.
The results of the calibration are shown in Figure 13:

• Figure 13a shows the relationship between the output voltages of the three optoelectronic sensing
elements and Fz.

• Figure 13b shows the relationship between output voltages of the three optoelectronic sensing
elements and (Fz, Mx).
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• Figure 13c shows the relationship between the output voltages of the three optoelectronic sensing
elements and (Fz, My).
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Figure 13. Characteristic curves between the physical loads (force/moment) and the output voltage of 
the force sensor: (a) Between the load (Fz) and the output voltages of the force sensor: external force 
was applied to and released from point ⓪ by the sensor calibration device as shown in Figure 12b; 
(b) between the loads (Fz, Mx) and the output voltage of the force sensor: external force was applied 
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Figure 13. Characteristic curves between the physical loads (force/moment) and the output voltage of
the force sensor: (a) Between the load (Fz) and the output voltages of the force sensor: external force
was applied to and released from point 0© by the sensor calibration device as shown in Figure 12b;
(b) between the loads (Fz, Mx) and the output voltage of the force sensor: external force was applied to
and released from points 1© and 2©; and (c) between the loads (Fz, My) and the output voltage of the
force sensor: External force was applied to and released from points 3© and 4©.
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All graphs show that the relationships between the physical values, Fz, (Fz, Mx), and (Fz, My),
and the corresponding sensor output voltages are relatively linear, albeit suffering from noticeable
hysteresis. It is noted that there is a degree of cross coupling between the sensing elements, i.e.,
the load on one axis produces a change in output on other axes. Here, each optoelectronic sensing
element is individually calibrated with loads applied along each axis.

The calibration data are used to generate a calibration matrix, which is used to convert the output
voltages to force and moment loading data. The three-by-three calibration matrix is multiplied by the
three-element voltage vector (column) to obtain the calibrated, decoupled output (Equation (13)):

kv =

 −6.3846 −6.8163 −5.9703
−3.4476 −3.6808 6.4479
−5.9376 6.3391 0

 (16)

 Calibration

Matrix


 Sensor

Output
Volts

 =

 Force
and

Moments

 (17)

 ke11 ke12 ke13

ke21 ke22 ke23

ke31 ke32 ke33


 v1

v2

v3

 =

 Fz

Mx

My

 (18)

ke =

 −5.6456 −5.3600 −5.5298
−5.1774 −2.9146 8.5146
−7.4585 7.8664 −0.7881

 (19)

From the experiment result as shown in Figure 13a, the three constants (m1, m2 and m3) are
obtained experimentally, the analytical calibration matrix kv is calculated by Equation (13) and
parameters (Table 1) as shown in Equation (16). At the same time, the calibration matrix ke is also
calculated by empirical approach, Multiple Linear Regression.

Applying Multiple Linear Regression with independent variables v1, v2 and v3 as shown in
Figure 13, the calibration matrix was calculated for Fz, Mx and My. As shown in Equations (17)–(19),
from the sensor voltage samples v1, v2 and v3, the estimated Fz, Mx and My can be obtained through
the calculated calibration matrix.

Although the analytically calculated calibration matrix (Equation (16)) is not exactly the same as
the empirically obtained one (Equation (19)), they are considerably analogous.

3.3. Verification of Calibration Matrix and Objective Evaluation of Our Proposed Force/Torque Sensor

In order to evaluate the proposed three-axis force/torque sensor objectively, sensor properties
such as crosstalk, hysteresis, repeatability, and error should be examined. For these reasons, a set
of experiments was carried out using the calibration device shown in Figures 11 and 12. In order to
verify our calibration matrix and evaluate the sensor properties, the loading/unloading calibration
process was performed. The calibration considered the three conditions of the benchmark forces at
the nine points, as explained in Section 3.1, and was performed five times at a linear guide speed
of 0.15 mm/s consecutively.

(1) Force Fz along z-axis 0© (in Figure 12b);
(2) Force Fz and moment Mx or My (from now express as (Fz, Mx) 1© 2© or (Fz, My) 3© 4©) (in

Figure 12b); and
(3) Force Fz and both moments Mx and My (from now express as (Fz, Mx, My) 5© 6© 7© 8©) (in

Figure 12b).

The output voltages of the three optoelectronic sensing elements during the calibration process
were recorded. Subsequently, estimated values of Fz, Mx and My were calculated by multiplying values
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of the voltage samples and the calibration matrix, presented in Equation (18). Overall, based on the
experimental results, the Fz, Mx and My calculated by the calibration matrix are in agreement with the
corresponding force values as measured by the ATI Nano17 IP65 force/torque sensor, as shown in
Figures 14–19.
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applied external forces are decreasing at every cycle, and therefore do not obtain the same maximum
applied force.

The estimated Fz, Mx, and My are compared with the benchmark results, shown in Figures 14–19
and Table 2. It was observed that the maximum error Fz and Mx is around 1.8 N (22.5%) and 1.6 N·cm
(17.7%), respectively, in the case of the benchmark (Fz, Mx) as depicted in Figure 12b( 1©) and Figure 15.
The maximum error for My is around 1.7 N·cm (16%) for physical values, (Fz, My) as depicted in
Figure 12b( 3©) and Figure 16, and Table 2.

The results of the repeatability test are presented in Table 3, showing the capability of the force
sensor in reproducing the same condition of the force, and two moments. It can be seen that the
maximum Fz and Mx repeatability is around 2.2% and 3.7%, respectively, in the case of the benchmark
force (Fz, Mx) as depicted in Figure 12b( 1©) and Figure 15. The maximum My is around 2.9% in the case
of the benchmark force (Fz, Mx, My) as depicted in Figure 12b( 8©) and shown in Table 3 and Figure 19.

The results of the hysteresis tests are shown in Table 3; an external force is applied onto the sensor
from zero to the maximum value, and then released from the maximum to zero on the load fixture
again. During one cycle, the sensor’s characteristic curves exhibit a considerable hysteresis as shown
in Figures 14–19. The hysteresis in the case of the benchmark forces (Fz, Mx) and (Fz, My) applied
(Figure 12b( 1©, 3©) can be observed in Figures 15 and 16, and maximum hysteresis values are shown
in Table 3.

The crosstalk between the sensing elements was summarized in Table 4. When an external force
is applied, e.g., Fz (force along the z-axis), the two moments Mx and My should ideally remain zero.
Similarly, if (Fz, Mx) is applied on the sensor, My should ideally remain zero, and if (Fz, My) is applied
on the sensor, Mx should remain zero. However, the results from the crosstalk experiments show that
applying maximum values of force Fz and moments (Fz, Mx), and (Fz, My) respectively on the load
fixture 0©, 1©, 2©, 3©, and 4©, influences the other force/moment readouts, as shown in Figures 14–18
and Table 4. When Fz, (Fz, Mx), and (Fz, Mx) are applied on the load fixture 0©, 1©, and 3©, maximum
crosstalk values arise along Mx of 0.078 N·cm/N and My of 0.054 N·cm/N (Figure 14), along My of
0.1284 N·cm/N and 9.26% (Figure 15), and along Mx of 0.0656 N·cm/N and 4.84% (Figure 16) can
be observed.

Table 2. Sensor Performance Property: Range and Error.

Force/Moment Range Maximum Error

Fz ±8.0 N 1.8 N (22.5%)
Mx ±9.0 N·cm 1.6 N·cm (17.7% )
My ±11.0 N·cm 1.7 N·cm (16.0%)

Table 3. Sensor Performance: Repeatability and Hysteresis.

Force/Moment Repeatability Hysteresis

Fz 2.2% 28.7 %
Mx 3.7% 22.6%
My 2.9% 21.1%

Table 4. Sensor performance property: Crosstalk.

Force/Moment Applied

Fz Fz Mx Fz My

Force/Moment Mx,y/Fz (N·cm/N) My/Fz (N·cm/N) My/Mx (%) Mx/Fz (N·cm/N) Mx/My (%)

Fz Fz Fz Fz

Mx 0.078 Mx 0.0656 4.84

My 0.054 0.1284 9.26 My
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4. Discussion

The calibration matrix was calculated analytically (Equation (16)) and compared with the
empirically obtained one (Equation (19)). The analytically induced Equations (7)–(13) assumed the
three deflections were measured on the centre points underneath the simply-supported beam where
external force is transmitted to, as shown in the Figure 6. However, in the real sensor application, the
optoelectronic sensors and the mirrors were attached closely to the centre of the sensor structure as
shown in Figures 1 and 2, and they were not positioned exactly at the centre and exactly toward the
centre of the sensor structure. For these reasons, the simulation result (Figure 10b) and the experiment
result (Figure 13b) are slightly different. Moreover, due to the hysteresis, the output voltage readings
of the three optoelectronic sensing elements obtained from the loading and unloading processes are
not exactly the same (Figure 13). However, the calibration matrix is calculated using the entire set of
voltage readings from both loading and unloading, therefore the calibration matrices are not exactly
the same.

The errors and the crosstalk are associated with hysteresis, as shown in Figure 13. Due to the
hysteresis, the calculated calibration matrix causes the errors and crosstalk in values of the Fz, Mx, and
My to be higher. It also negatively influences the repeatability of the sensor. As shown in Figures 14–19,
it is observed that due to hysteresis, the magnitudes of the estimation forces/moments are getting
larger in comparison with real forces/moments, as cycle numbers increase. This explains why the
repeatability errors of Fz, Mx, and My are relatively large. The static simulation result (Figure 10d–f)
shows a low crosstalk of around less than 0.5% (note that the static simulation cannot show hysteresis
properties). However, it is noted that the hysteresis level of the multi-axis force/torque sensor proposed
in this study is higher than that seen in commercial sensors (such as ATI sensors). Hence, the use of
metals in the fabrication of future sensors is planned, instead of the currently used ABS plastic materials
(the sensor structure is fabricated from Visijet EX200 via a Projet HD 3000 3D production system.

Using our calibration device, Fz could be applied on the sensor independent of Mx and My.
However, the pure bending moments Mx and My could not be independently exerted on the sensor.
Hence, in our setup, we had to apply coupled force/moment values to our sensor to calibrate it.
As such, in order to guarantee that the sensor readings are not affected by forces and torques that it
does not measure (i.e., forces on the x and y directions and moment around the z direction), a set of
simulations were carried out that are explained in the following (Figures 20 and 21).
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application; (b) Deflections as a function of different amounts of applied moment (the resultant force
is constant).

In the simulation, two opposing forces were applied to a shaft along the sensor’s z direction.
The smaller force F2 was applied on the tip of the shaft (0.5 N), while an opposing force of higher
magnitude F1 was applied along the shaft at different points (0.8 N). Since the two forces have different
magnitudes, a net horizontal force was always resulted. However, the resulting moment depended on
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the point of application of F1. When the length of the lever arm at the point of application of F1 was
such that the moment equalled the one generated by F2, the resulting moment was zero, while the
resultant force was F2 − F1 = 0.3 N. It can be seen in Figure 20 that, at this point, the deflection of all
three beams was negligible. Thus, this structure is not affected by these lateral forces.

Concerning the moment around the z direction, a similar simulation was carried out, which
demonstrated that the sensor was also not affected noticeably by this element (Mz). Figure 21 shows
the deflection of the three beams in this situation. It can be seen that the deflection is negligible (in the
order of 10−7 m, around 100 times smaller than for a moment of similar magnitude around one of the
other axes).
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In the future, we will propose an advanced calibration device that can apply coupled force/torque
as well as pure moments. In addition, advances in optoelectronics technology have allowed photo
sensors to become highly miniaturized, whilst remaining very cheap. Small-sized optoelectronics were
recently achieved; an example includes the NJL5901R-2, 1.0 × 1.4 × 0.6 mm3, by New Japan Radio
Co., Ltd. (Tokyo, Japan). We, therefore, foresee that the size of our sensor structure can be further
reduced [50].

It should be mentioned that, in Section 3.1, an ATI Nano IP65 six-axis force/torque sensor,
which is a standard measurement device, was used for calibration. However, this sensor is not a
high precision sensor, whose inaccuracies are around 1%. According to the measurement theory, the
standard measurement device should be more precise than that of the calibrated sensor. Hence, in our
future studies we will either use standard weights or a more precise six-axis force/torque sensor for
the purpose of calibration.

5. Conclusions and Future Works

In this paper, details of an optoelectronic and simply-supported beam based three-axis
force/torque sensor, which can be adapted to bespoke mechanical structures for the purpose of
force/torque measurements within robot systems, have been described. An example application
of our force/torque sensing concept to a flexible continuum cylindrical MIS (Minimally Invasive
Surgery) manipulator (the STIFF-FLOP arm) has been presented, including its design, fabrication, and
evaluation tests. In addition, a strategy to obtain the calibration matrix for reliable force prediction,
applying the multiple linear regression method, is proposed. Finally, the effectiveness of the proposed
three-axis force sensor has been validated through a set of experiments evaluating its properties such
as crosstalk, hysteresis, repeatability and error.

Although, in this paper, we verified a sensor development method of building three-axis
force/torque sensor based on optoelectronic technology and simply-supported beam, as future work,
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a metal structure will be considered to re-evaluate the sensor performance properties conducted in the
Section 3.
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