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Abstract: Using pliable materials for the construction of robot bodies presents new and interesting challenges for 

the robotics community. Within the EU project entitled STIFFness controllable Flexible & Learnable manipulator 

for surgical Operations (STIFF-FLOP), a bendable, segmented robot arm has been developed. The exterior of the 

arm is composed of a soft material (silicone), encasing an internal structure that contains air-chamber actuators 

and a variety of sensors for monitoring applied force, position and shape of the arm as it bends. Due to the physical 

characteristics of the arm, a proper model of robot kinematics and dynamics is difficult to infer from the sensor 

data. Here we propose a non-linear approach to predicting the robot arm posture, by training a feed-forward neural 

network with a structured series of pressures values applied to the arm's actuators. The model is developed across 

a set of seven different experiments. Because the STIFF-FLOP arm is intended for use in surgical procedures, 

traditional methods for position estimation (based on visual information or electromagnetic tracking) will not be 

possible to implement. Thus the ability to estimate pose based on data from a custom fiber-optic bending sensor 

and accompanying model is a valuable contribution. Results are presented which demonstrate the utility of our 

non-linear modelling approach across a range of data collection procedures. 

Copyright © 2016 IFSA Publishing, S. L. 
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1. Introduction 

Pliable manipulators represent a new branch of 

robotic construction that promises great potential, but 

is faced with intriguing challenges with respect to 

calibration and control (Althoefer et al., 2014; 

Cianchetti et al., 2014; Vogt et al., 2013; Sareh et al., 

2014; Jiang et al., 2012; Noh et al., 2014). Traditional 

robot kinematics assume that a robot is constructed out 

of rigid material and that its body shape is fixed. 

Where there are joints, the body may bend—but not 

otherwise. If the body meets an object that is hard, 

there will be a collision in which the rules of rigid-

body physics apply. However, when one of the 

colliding objects is not rigid, different rules apply. 

Indeed, within the computer graphics community, 
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much attention has been paid to the development of 

computational models of the behavior of soft bodies 

(e.g., Chadwick, Haumann & Parent, 1989). But such 

behaviors are new to the robotics community, since 

soft robot bodies composed of flexible materials have 

only recently been introduced. 

Due to the unconventional characteristics of soft 

body robots, in order to properly and precisely model 

and control kinematics and dynamics, sensors must be 

employed strategically. Focusing on the estimation of 

pose, namely the position and orientation of the robot 

end-effector, different sensors have recently been 

proposed in the literature. Prominent examples 

include: off-the-shelf resistive flex sensors based on 

conductive ink, e.g., FLXT1; specific types of smart 

materials, e.g., Ionic Polymer Metal Composite 

(IMPC) (Punning et al., 2007); soft sensors based on 

micro-channel of conductive liquid (eutecticGallium 

Indium, eGaIn); and sensors based on fiber optics. 

Resistive sensors based on conductive inks and IPMCs 

are bipolar devices and are not suitable for three-

dimensional fabrication. The sensing systems based 

on eGaIn are attractive for integration in soft structures 

and robots; however, there is no data on 

biocompatibility of this material according to the 

datasheet published. Fiber optics are employed for 

curvature sensing in flexible robots. They function by 

sensing the change in optical characteristics of the 

light. These include optical sensors based on 

wavelength modulation (Patrick et al., 1998; Allsop et 

al., 2005), polarization (Feng et al., 2011) and light 

intensity modulation (Liu et al., 2010; Liu et al., 2011; 

Noh et al., 2015).  From the electrical view, optical 

fibers are immune to magnetic field and electrical 

interference and, hence, a distinguished candidate for 

many industrial and medical applications. From the 

mechanical point of view, plastic optical fibers are 

very attractive for integration into soft structures due 

to their ability to follow the elastic deformation of the 

robot bodies in which they are embedded. Optical 

sensors based on Fibre Bragg Grating are costly and 

sensitive to temperature and strain (Yi et al., 2010; 

Zhang et al., 2007). Here, we employ light intensity 

modulation to produce a low-cost optical curvature 

sensor amenable for integration into for flexible, soft 

and extensible robotic arms. 

The work presented here investigates the question 

of modelling the behavior of such a device, and here 

specifically studies a single-segment manipulator that 

has been developed within the EU project STIFFness 

controllable Flexible & Learnable manipulator for 

surgical OPerations (STIFF-FLOP). As described in 

Section 2, the device contains embedded air-chamber 

actuators and fiber-optic bending sensors. A series of 

experiments was conducted (detailed in Section 3) in 

which data was collected on the behavior of the 

actuators and the bending sensor, as well as a 

complementary set of additional sensors intended to 

provide “ground truth position” readings. Using the 

                                                 
1 Flexpoint Sensor Systems, Inc., USA 

experimental data, a series of non-linear models of 

robot body-segment behavior were trained (described 

in Section 4). The results, presented in Section 5, 

indicate that the bending sensor, accompanied by our 

non-linear model, provides a reliable means of 

predicting pose, as measured against ground-truth 

position data. 

In the work presented here, sensors and actuators 

are integrated together, inside the soft structure of the 

pliable arm, without any mechanical isolation. Here, 

the aim is to model sensor-actuator interactions. In 

related work, additional investigations have been 

conducted into solutions that minimize the negative 

aspects of the aforementioned interactions, because 

such interactions can contribute to noise; these are 

presented in Sareh et al., 2015a and Sareh et al., 

2015b. 

 

2. Hardware Description 

A single segment of the STIFF-FLOP robot arm 

was used to perform the experiments described here. 

The segment is made of Ecoflex 00-50 Supersoft 

Silicone2, with a chamber length of 30 mm and 

diameter of 33 mm. Figure 1 shows the segment in the 

experimental setup configuration. 

 

 
Fig. 1. A side view of the STIFF-FLOP robot arm 

segment with integrated fiber-optic bending and NDI 

Aurora position sensors, a pneumatic actuation system, 

and the estimated bending angle visualized in real-time. 

 

2.1. Actuators 

The segment incorporates three actuators - air 

chambers - which are equally distributed (every 120o) 

around the circumference of a cross-section of the 

robot arm segment (see Figure 2a). These actuators 

support the moving, bending and extending of the arm. 

The nature of the air-chamber actuators, combined 

with the material that the segment is made of, renders 

the whole manipulator flexible. It can easily bend from 

side to side, as well as compress and extend (like a 

spring). This means that the device will be inherently 

2 Smooth-On Inc., USA 
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safe for surgical procedures - the target task domain 

for the STIFF-FLOP project. 

The air chambers are fed by 4 mm diameter tubes, 

with air at a maximum pressure of 0.6 bar. A set of 

three pressure regulators3 supply air to the chambers, 

extracted from an external compressor upon triggering 

the actuator. Three analog signals, with a range of 1-

10V, are used to drive voltage regulators (Vr1, Vr2, Vr3) 

in order to apply constant pressure (p1, p2, p3) to each 

chamber of the device. 

 

 

Fig. 2. (a) The overall structure of the STIFF-FLOP module with integrated bending sensor, (b) the configuration of fiber optic 

bending sensor, and (c) the cross section of the module indicating the position of pneumatic actuators and optical fiber 

2.2. Bending sensors 

The novel bending sensor is comprised of three 

pairs of optical fibers, also equally distributed around 

the central axis of the arm, as illustrated in Figure 2a. 

Each sensor is made of two optical fibers, which are 

connected to an emitter and a detector (Figure 2). The 

two fibers originate from a digital amplifier, a 

Keyence FS-N11MN Fiber Optic Sensor4. One fiber 

extends along the length of the arm segment, then 

bends at the top and returns to the base (as illustrated 

in Figure 2b). According to this setup, as soon as the 

manipulator moves, bends, extends or elongates, the 

corresponding lengths of the emitting fibers that are 

fitted inside the pliable arm change in response. 

In other words, movement of the arm segment 

effects the distance, d, between the emitter and the 

detector, as indicated in Figure 2b, modulating the 

light intensity received by the fixed fiber at the 

opposite end of the sensor. This information is 

transduced into a voltage signal in the range of 1-5V, 

by means of the aforementioned digital amplifier 

(Figure 2b). When the manipulator undergoes an 

amount of bending deformation in a particular 

orientation, a unique voltage matrix is generated: 

Vs = (Vs1 Vs2 Vs3)  

 

2.3. Position sensors 

An NDI Aurora System5 was used to estimate the 

position and orientation of the robot arm, providing 

“ground truth” in order to measure the accuracy of the 

pose predicted by the Keyence-based bending sensors 

plus the non-linear model (described in Section 4). The 

Aurora sensor technology is based on electro-

magnetic trackers, which allow real-time 

measurements of the position and orientation of each 

tracker (6 degrees of freedom). Four markers were 

used in the experiments described here: one on the 

manipulator base, one at the top and two on the side, 

located halfway along the length of the manipulator 

and held in place by means of a ring-shaped support

. 

 

                                                 
3 SMC ITV0030 
4 Keyence Co., Ltd. 

5 AURORA 4 Port PM Tracking System V2, Northern 

Digital, Canada 
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Fig. 3. (a) The experimental setup used for validation of the nonlinear bending model, (b) the location of NDI Aurora 

trackers {A1, A2, A3, A4} embedded in the arm segment, and (b) the arrangement of fiber-optic sensors {K1, K2, K3}. 

The experimental setup is shown in Figure 3. The 

three Keyence sensors are labeled K1, K2 and K3 (tiny 

red lights that can be seen on the base, within their 

housing). The two Aurora markers placed on the side 

of the segment are labeled A2 (left side) and A3 (right 

side). The other two Aurora markers are not labeled in 

the figure. The one on the base (A1) is not visible 

because it was under the apparatus shown in the figure, 

within the center of the base, and the other was on the 

top (A4), in the center of the circular black region in 

the middle of the figure. The three air-chamber 

actuators are labelled P1, P2 and P3, and correspond to 

the positions where the thin blue tubing intersects with 

the arm segment. 

 

3. Experiments 
 

The goal of the experiments described here was to 

obtain data from the robot hardware and analyze that 

data to determine whether the position of the robot arm 

is predictable, given the data reported by the bending 

sensors. Since the ultimate goal is to develop this 

architecture into a multi-segmented flexible 

manipulator instrument to employ during keyhole 

surgery, we were interested to learn whether the 

Keyence sensor readings could be used as the basis of 

a model of the behavior of the robot arm. Thus, in a 

structured way (outlined below), we gathered data on 

the amount of pressure applied to the manipulator and 

the resulting positional data, as measured by the 

Keyence bending sensors, and also by the Aurora 

                                                 
6 http://www.ni.com/labview/  
7 National Instruments, Ltd. 

position sensors (for obtaining ground truth, against 

which we can compare the bending sensor data). In 

summary, our goal is to use the position sensor data to 

determine whether positioning information derived 

from the bending sensor is a good predictor of the 

amount of pressure applied to the manipulator. 

3.1. Software and data acquisition 

architecture 

The experimental setup involved two separate data 

acquisition systems, in order to collect bending sensor 

data independently from the ground truth position 

data. The first data acquisition system was designed to 

collect the bending sensor data in real-time. For this 

system, an interactive program was written in 

LabVIEW6 and combined with an NI 6211 data 

acquisition card7. This program allows a user to 

control the applied pressure regulators (Section 2.1) 

and read data from the bending sensors (Section 2.2), 

at a sampling frequency of 22 Hz. The second data 

acquisition system was designed to collect position 

sensor data in real-time (Section 2.3). For this system, 

a non-interactive program was written in ROS8 and 

interfaced with the four Aurora markers described 

earlier. Data was collected from these sensors with a 

sampling frequency of 31 Hz. This dual setup permits 

the recording and saving of measurements from two 

independent data collection systems, along with high-

precision timestamps that allow synchronization 

between them. Collecting data independently ensures 

8 Robot Operating System, http://www.ros.org  

http://www.ni.com/labview/
http://www.ros.org/
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that there is no timing or processing noise coming 

from the (hopefully) redundant data collection system. 

3.2. Protocol 

We ran a series of seven experiments to collect 

data in a structured way, from the actuators, the 

bending sensors and the position sensors. Each of the 

three actuators, (P1, P2, P3), could take on any of four 

values: 0.0, 0.2, 0.4 or 0.6 bar, where 0.0 bar is the 

resting state (where no pressure is applied). Our goal 

is to determine whether we can predict the position of 

the robot arm segment, given the pressure applied and 

the data collected from the bending sensor. As detailed 

in the next section, we developed a non-linear model 

that takes the three input pressure values and outputs 

the 3D pose of the arm segment. 

Our experiments were designed to address two 

primary research questions. First, the overarching 

question was whether we could build a model (either 

linear or non-linear) with which to predict the arm 

pose from the bending sensor data. Second, due to the 

nature of the air-pressure actuators, we hypothesized 

that air could accumulate in the chambers and so the 

sequence of actuator commands would be important in 

developing our model; i.e., the pressure applied at a 

single instant in time, t, might not be reliable enough 

on its own to predict position - it might be necessary 

to model a set of {t…t-n} pressure values in order to 

produce an accurate prediction of robot arm position. 

To address this second question specifically, we 

designed experiments in two groups, as described 

next. 

The first group of experiments (1-4) was designed 

to evaluate the bending sensor performance when 

varying amounts of pressure were applied to the air-

chamber actuators. Four sequences of combinations of 

pressure values were applied to the chambers. In each 

case, the device started from a resting state. After 

applying each pressure-value combination, data was 

collected for 10 seconds in order to give the 

manipulator and the sensors time to settle and reach a 

steady state. After applying each combination in the 

designated sequence for each of these four 

experiments, the pressure values were reset to 0.0, 

allowing the manipulator to return to its resting 

position (i.e., all the three air chambers empty). The 

sequences of pressure values were computed 

according to the pseudo-code in Figure 4, where the 

constant, P1, was set as shown in Table 1. 

The second group of experiments (5-7) were 

designed to evaluate the bending sensor performance 

when accumulating amounts of pressure were applied 

to the air-chamber actuators. Here, the pressure was 

continually increased, without allowing the 

manipulator to return to its resting position in between 

pressure combinations in each sequence. Figure 5 

contains the pseudo-code for experiment 5. 

Experiments 6 and 7 followed the sequences listed in 

Table 2, with a 10-second wait before moving to the 

next set of values. 

 

P1 = constant 
for P2 in {0.0, 0.2, 0.4, 0.6}: 
   for P3 in {0.0, 0.2, 0.4, 0.6}: 

  apply {P1,P2,P3} 
  wait 10 sec 
  apply {0.0, 0.0, 0.0} 
  wait 10 sec 

Fig. 4. Pseudo-code for sequences used in 

experiments 1-4 (pressure values in bar).  

Table 1. Values of P1 for experiments 1-4. 

experiment value of P1 

1 0.0 

2 0.2 

3 0.4 

4 0.6 

 

The distinction between the two groups of 

experiments - variation (experiments 1-4) versus 

accumulation (experiments 5-7) of actuator pressure - 

is illustrated in Figures 7c and 8c. Figure 7c shows the 

applied pressure values, over time, for experiment 3, 

where the air chambers were allowed to empty and 

return to the resting state in between consecutive 

applications of pressure. In contrast, Figure 8c shows 

the applied pressure values for experiment 6, where 

the air chambers were not emptied in between 

consecutive applications of pressure; these sequences 

were designed to determine whether an accumulation 

of air inside the chambers impacted the values 

returned by the bending sensors. 

 
{P1, P2} = {0.0, 0.0} 
for P3 in {0.0, 0.2, 0.4, 0.6}: 

   apply {P1, P2, P3} 
   wait 10 sec 
{P1, P3} = {0.0, 0.0} 
for P2 in {0.0, 0.2, 0.4, 0.6}: 

   apply {P1, P2, P3} 
   wait 10 sec 
{P2, P3} = {0.0, 0.0} 
for P1 in {0.0, 0.2, 0.4, 0.6}: 

   apply {P1, P2, P3} 
   wait 10 sec 

Fig. 5. Pseudo-code for sequences used in 

experiment 5 (pressure values in bar).  

Table 2. Sequences used in experiments 6 

and 7: pressure values in bar, (P1, P2, P3).  

experiment 6 experiment 7 

(0.0, 0.0, 0.0) (0.0, 0.0, 0.0) 

(0.0, 0.0, 0.2) (0.0, 0.2, 0.0) 

(0.0, 0.2, 0.2) (0.2, 0.2, 0.0) 

(0.2, 0.2, 0.2) (0.2, 0.2, 0.2) 

(0.2, 0.2, 0.4) (0.2, 0.4, 0.2) 

(0.2, 0.4, 0.4) (0.4, 0.4, 0.2) 

(0.4, 0.4, 0.4) (0.4, 0.4, 0.4) 

(0.4, 0.4, 0.6) (0.4, 0.6, 0.4) 

(0.4, 0.6, 0.6) (0.6, 0.6, 0.4) 

(0.6, 0.6, 0.6) (0.6, 0.6, 0.6) 

(0.0, 0.0, 0.0) (0.0, 0.0, 0.0) 
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3.3. Raw data analysis 

The raw data was noisy, which is not unexpected. 

For example, large spikes occurred occasionally in the 

Aurora sensor readings. As a result, we introduced a 

filtering process in which we computed the average of 

the actuator and sensor values over a 5-sample 

window. This process successfully smoothed out any 

anomalies and other noise from the raw data. Table 3 

shows the number of samples of raw data collected in 

each experiment and the number of samples from each 

experiment after the filtering process was performed. 

 
Table 3. Number of samples used for training.  

experiment raw data filtered 

1 9333 1866 

2 8706 1741 

3 8028 1605 

4 8244 1648 

5 3688 737 

6 2758 551 

7 2680 535 

total 43437 9813 

 

The raw data values for the ground-truth position 

are meaningless within an absolute reference frame—

we are really interested in the change in position over 

time. Thus we use the displacement values for both 

position and bending sensor data. This has the added 

benefit of allowing us to ignore any fixed calibration 

bias in either type of sensor. The displacement of the 

bending sensor values, from the starting (resting) 

position, over time, is computed as: 

dispi = Vi - V0 

where Vi is the current position (at time i) and V0 is the 

starting (resting) position. Note that the bending 

sensor displacement values can be negative. The 

displacement, or distance moved, for each of the 

Aurora markers, is measured from the starting position 

using the Euclidean distance: 

disti = [(xi – x0)2 + (yi – y0)2 + (zi – z0)2] 

Figures 7 and 8 display examples of the filtered 

data collected during two of the experiments (numbers 

3 and 6, respectively). The top plot (a) in each figure 

shows the displacement of the bending sensor values. 

The middle plot (b) shows the distance for each of the 

Aurora markers, measured from their starting position, 

also over time. The bottom plot (c) shows the 

corresponding applied pressure values, over the same 

timescale. It is easy to see that as different amounts of 

pressure were applied via the air-chamber actuators, 

the displacement of the bending sensors changed, as 

did the displacement distance for the position markers. 

Our first research question asks whether the 

bending sensor values can reliably predict the position 

of the robot arm segment. Obviously, if there is a 

linear correlation between these values, our job would 

                                                 
9 The nnp network was trained over 100,000 generations 

per round. 

be easy. Unfortunately, this is not the case. Our next 

step is to investigate construction of a non-linear 

model to reach our goal, as described in Section 4, 

below. 

 

4. Model 
 

Our overall aim is to construct a computational 

model that will reliably predict the position of the arm 

segment, based on sensor data. After collecting the 

experimental data described above, we then designed 

four different models, varying the inputs and outputs, 

to determine empirically which properties of the arm 

can be measured in real-time and produce reliably 

predictable results. All of the models are based on 

feed-forward neural networks (Mcculloch & Pitts, 

1943; Hinton, 1989; Pomerleau, 1992). They are 

trained using back-propagation (Rumelhart, Hinton & 

Williams, 1986), with a learning rate of 0.001 and 

momentum set to 0.9. 

Table 4 contains the parameters that define the 

architecture of each neural network model. The first 

two rows in the table are designed to predict the 

applied pressure values, given bending sensor values 

and position values as input (models nnk and nna, 

respectively). The second two rows are designed to 

predict the position values, given the applied pressure 

and bending sensor values as input (models nnar and 
nnp, respectively). The last row represents what we set 

out to do: predict the position values, given the 

bending sensor values. However, we cannot achieve 

this overall aim if we do not have reliable models for 

each of the different dynamic properties of the arm, 

i.e., the applied pressure values, the position sensor 

values and the bending sensor values. More discussion 

of this appears in Section 5. 

For the applied pressure, three values are 

considered, (P1, P2, P3), in bar, for each of the three 

air-chamber actuators (Section 2.1). For the bending 

sensor, three values are considered, (K1, K2, K3), in 

volts, for each of the three fiber-optic bending sensors 

(Section 2.2). For the position sensor, twelve values 

are considered, (x, y, z), location in 3D space for each 

of the four position markers (Section 2.3). 

 
Table 4. Parameters for neural networks trained.  

nnet 

type 

input 

source 

num. 

input 

nodes 

num. 

hidden 

nodes 

output 

target 

num. 

output 

nodes 

nnk bending 3 4 pressure 3 

nna position 12 8 pressure 3 

nnar pressure 3 8 position 12 

nnp bending 3 8 position 12 

 

The networks were each trained in rounds, using 

7-fold cross validation and 500,0009 generations per 

round, using data from all seven experiments. The 

network weights were all initialized randomly. The 
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rounds proceeded as follows. The first training round 

was executed on the data for experiment 1. Then the 

results were evaluated on each of the remaining 6 

experimental data sets (experiments 1-6). For the 

second training round, each network's weights were 

initialized to the weights of the best-performing 

network from the previous round (a process based on 

simulated annealing), and again, the network was 

evaluated against the remaining 6 experimental data 

sets. In other words, in the second round, the training 

data set was from experiment 2, and the evaluation 

data was the combined set of data from experiments 1 

plus 3-7.  

 

5. Results 

The results from training the models are shown in 

Table 5. The values in the table are the best error rate 

for each of the four networks trained. The lowest 

training error occurred with networks nnar and nnp. 

Table 6 shows the average error rate for each of the 

networks across the evaluation data set (i.e., the other 

6 experiment data files). The lowest absolute 

evaluation error occurred with the same two networks  

(nnar and nnp). 

 

Table 5. Error rates from training. 

training 

set 
nnk nna nnar nnp 

1 0.077   0.122   0.004   0.002 

2 0.089   0.140   0.003   0.002 

3 0.095   0.132   0.004   0.002 

4 0.133   0.172   0.008   0.003 

5 0.088   0.109   0.004   0.005 

6 0.075   0.080   0.002   0.003 

7 0.077   0.083 0.003   0.003 

overall 0.091 0.120 0.004 0.003 

 

Table 6. Error rates from evaluation. 

training set 
nnk nna nnar nnp 

1 0.469 0.282 0.027 0.037 

2 0.270 0.259 0.011 0.013 

3 0.253 0.295 0.012 0.013 

4 0.394 0.219 0.022 0.012 

5 0.274 0.222 0.012 0.059 

6 0.234 0.353 0.012 0.028 

7 0.370 0.313 0.020 0.068 

overall 0.323 0.278 0.016 0.033 

 

Figure 6 illustrates the improvement in error rate 

during training. The values plotted are the mean error 

every 1000 generations. Results from two different 

experiments are shown (3 and 6), for comparison. 

Note the different ranges on the y-axes for each row of 

plots. This is because the pairs of networks are 

predicting different outputs (pressure or position 

values). In all cases, the shape of the training error is 

as expected: the networks learn quickly in the early 

generations and then level out, and improvement tails 

off in later generations. 

As mentioned earlier, our goal is to model the 

relationships between the actuator and sensor data 

collected during our experiments. We want to be able 

to predict the position of the arm segment, given 

bending sensor data. This could either be done 

directly, with bending sensor values as inputs to our 

model and position values as output (i.e., network 

nnp); or it could be done directly, with bending sensor 

data used to predict pressure values, and then predicted 

pressure used to predict position (i.e., network nnk 

followed by nnar). Either method is a reasonable 

approach, albeit the latter method is more 

computationally expensive and more prone to error. 

Looking at the training results in Tables 5 and 6, it is 

clear that predicting position is more accurate than 

predicting bending sensor values. These results 

answer our first research question: it is possible to 

build a model (non-linear) which with we can 

accurately predict position from bending sensor data. 

experiment 3 experiment 6 

  
(a) nnk (error range [0.07-0.20]) 

  
(b) nna (error range [0.07-0.20]) 

  
(c) nnar (error range [0.001-0.020]) 

  
(d) nnp (error range [0.001-0.020]) 

 

Fig. 6. Improvement in error during training. The x-axis 

starts at 0 and extends for 500K generations (except in 

the case of the nnp model, where training was completed 

after 100K generations). The y-axis contains the error 

rate, as labelled. See text for details. 

 

One additional point to make is that the training 

results did not vary across the different experiments, 

meaning that the sequence of actuator commands 

applied to the arm segment do not impact the model. 

This answers our second research question. We had 

hypothesized that the results would be different when 
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we returned the arm segment to its resting position in 

between each new set of applied pressure values 

(experiments 1-4), as opposed to accumulating the 

pressure (experiments 5-7). However, the differences 

in training between the two groups of experiments is 

negligible.  

 
(a) displacement of Keyence sensor values 

 
(b) displacement distance of Aurora markers 

 
(c) applied pressure 

Fig. 7. Filtered data from experiment 3, over time (x-

axis). See text for explanation. 

 

6. Summary 

We have described a non-linear method for 

modelling the position of a flexible robot arm segment, 

using a novel fiber-optic bending sensor and a feed-

forward neural network model. In a series of 7 

experiments, we collected actuator and sensor data, 

including ground truth position information, in the 

attempt to construct a reliable model for how the arm 

segment moves as a result of different actuator 

commands being applied to the device. We 

experimented with four different neural network 

architectures to learn a model of the arm's behavior.  

 
(a) displacement of Keyence sensor values 

 
(b) displacement distance of Aurora markers 

 
(c) applied pressure 

Fig. 8. Filtered data from experiment 6, over time (x-

axis). See text for explanation. 
 

Our results show that the neural network model 

produces a reliable estimate for the pose of the arm 

segment. In addition, we have demonstrated that the 

model is invariant to the order in which actuator 

commands are applied. This is an important result. 

Prior to conducting these experiments, we had been 

concerned about the accumulative effect of the type of 

air-chamber pressure actuators employed in the arm 

segment. Now we know that the neural network model 

can estimate pose regardless of recent arm movements 

leading up to the point of estimation. 

The next steps with this work involve applying the 

model in a more dynamic way, rather than the 
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structured sequences of “move-and-wait” commands 

tested here. 
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